Дихлорацетат вызывает апоптоз и остановку клеточного цикла в клетках колоректального рака
Дихлорацетат вызывает апоптоз и остановку клеточного цикла в клетках колоректального рака
оригинал статьи: https://www.sci-hub.ru/10.1038/sj.bjc.6605701
.М. Мадхок*, 1 , С. Йелури 1 , С.Л. Перри 1 , Т.А. Хьюз 2 и Д.Г. Джейн 1
1 Секция трансляционной анестезии и хирургии, Университет Лидса, 7 этаж здания клинических наук, Университетская больница Св. Джеймса, Лидс, Великобритания
2 Институт молекулярной медицины Лидса, Университет Лидса, Университетская больница Св. Джеймса, Лидс, Великобритания
Адрес для переписки: д-р Б. М. Мадхок; Электронная почта: umbm@leeds.ac.uk
Исправлено: 23 марта 2010 г.
Принято: 26 апреля 2010 г.
Опубликовано: 18 мая 2010 г.
Абстрактный
Фон
Раковые клетки сильно зависят от гликолиза. Нашей целью было определить, приведет ли переключение метаболизма с гликолиза на митохондриальное дыхание к снижению роста преимущественно колоректальных раковых клеток по сравнению с нормальными клетками, и изучить лежащие в основе этого механизмы.
Методы.
Репрезентативные линии клеток колоректального рака и нераковых клеток обрабатывались дихлорацетатом (ДХА), ингибитором киназы пируватдегидрогеназы.
Результаты
Дихлорацетат (20 мМ) не снижал рост нераковых клеток, но вызывал значительное снижение пролиферации раковых клеток ( P = 0,009), что было связано с апоптозом и остановкой клеточного цикла в фазе G 2. Наибольший апоптотический эффект был очевиден в метастатических клетках LoVo, в которых DCA индуцировал до десятикратного увеличения количества апоптотических клеток через 48 ч. Наиболее выраженный арест в фазе G 2 был очевиден в хорошо дифференцированных клетках HT29, в которых DCA вызывал восьмикратное увеличение количества клеток в фазе G 2 через 48 ч. Дихлорацетат снижал уровень лактата в ростовой среде и индуцировал дефосфорилирование субъединицы E1 α пируватдегидрогеназного комплекса во всех клеточных линиях, но внутренний митохондриальный мембранный потенциал был снижен только в раковых клетках ( P = 0,04).
Выводы
Ингибирование киназы пируватдегидрогеназы ослабляет гликолиз и облегчает митохондриальное окислительное фосфорилирование, что приводит к снижению роста клеток колоректального рака, но не нераковых клеток.
Ключевые слова: дихлорацетат, колоректальный рак, пируватдегидрогеназа, киназа пируватдегидрогеназы
British Journal of Cancer (2010) 102, 1746 – 1752, www.bjcancer.com
doi: 10.1038/sj.bjc.6605701
© 2010 Cancer Research UK
ВВЕДЕНИЕ
Колоректальный рак является третьим по распространенности видом рака в мире и четвертой по значимости причиной смерти от рака (Shike et al, 1990). В 2007 году колоректальный рак стал причиной 17,1 смертей на 100 000 человек в Соединенном Королевстве (UK Bowel Cancer Statistics, 2009). Несмотря на недавние достижения, прогноз для пациентов с запущенным и метастатическим колоректальным раком остается неблагоприятным. Нацеливание на метаболизм опухоли для терапии рака является быстро развивающейся областью (Pan and Mak, 2007). Ранние наблюдения относительно метаболических различий между раковыми и нормальными клетками были сделаны Отто Варбургом, который показал, что раковые клетки по своей природе зависят от гликолиза для производства химической энергии (Warburg, 1956). В настоящее время появляется все больше доказательств того, что этот повышенный гликолиз является результатом влияния множественных молекулярных путей, включая адаптивные ответы на гипоксическую микросреду опухоли, онкогенную сигнализацию и митохондриальную дисфункцию (Gatenby и Gillies, 2004; Gillies и Gatenby, 2007; Wu et al, 2007). Гликолитический фенотип дает раковым клеткам преимущества в росте, противодействуя апоптозу и способствуя распространению опухоли и метастазированию (Yeluri et al, 2009).
Ключевым регулятором клеточного метаболизма является пируватдегидрогеназа (ПДГ). Пируватдегидрогеназа преобразует пируват, полученный в результате гликолиза, в ацетил-КоА, который окисляется в цикле трикарбоновых кислот в митохондриях. Активность пируватдегидрогеназы строго регулируется ингибирующим фосфорилированием киназой пируватдегидрогеназы (ПДК). Фосфорилирование происходит на субъединице E1 α ПДГ (ПДГЭ1 α ) в трех местах: Ser 232 , Ser 293 и Ser 300 (Rardin et al, 2009). Дихлорацетат (DCA) является ингибитором всех четырех изоферментов PDK(1–4) (Stacpoole, 1989), и недавно было показано, что он снижает рост линий клеток рака легких, эндометрия и молочной железы (Bonnet et al, 2007; Wong et al, 2008; Sun et al, 2009). Сообщалось, что он снижает рост этих раковых клеток в основном за счет снижения ингибирующего фосфорилирования PDH, тем самым способствуя окислительному фосфорилированию митохондрий и вызывая апоптоз через митохондриальные, NFAT-Kv 1.5 и p53-активируемый модулятор апоптоза (PUMA)-опосредованные пути.
Было обнаружено, что клетки колоректального рака подвергаются повышенному гликолизу (Bi et al, 2006), а микроокружение опухоли является гипоксическим и ацидотическим, в основном из-за плохо развитого кровоснабжения (Dewhirst et al, 1989; Milosevic et al, 2004). Ранее мы показали, что это особенно верно для более агрессивного фенотипа (Thorn et al, 2009), и экспрессия важных маркеров гипоксии увеличивается при колоректальном раке, особенно на инвазивном крае (Rajaganeshan et al, 2008, 2009). Целью данного исследования было изучение влияния DCA на рост клеток колоректального рака в попытке изучить ингибирование PDK как новую терапевтическую стратегию против колоректального рака.
Материалы и методы
Клеточные культуры
Все клеточные линии были приобретены в Американской коллекции типовых культур (Манассас, Вирджиния, США) или Европейской коллекции клеточных культур (Солсбери, Уилтшир, Великобритания): HB2 (клетки эпителия молочной железы неракового происхождения), 293 (клетки эпителия из почки эмбриона человека), HT29 (высокодифференцированная первичная колоректальная аденокарцинома), SW480 (низкодифференцированная первичная колоректальная аденокарцинома) и LoVo (метастатический левый надключичный лимфатический узел из колоректальной аденокарциномы). Клетки 293 и HB2 содержались в среде DMEM, HT29 и SW480 — в среде RPMI 1640, а LoVo — в среде F12 (все от Invitrogen, Карлсбад, Калифорния, США), дополненной 10% эмбриональной телячьей сыворотки, в инкубаторе с влажностью 37°C и 5% CO2 . Для экспериментов в гипоксических условиях мы инкубировали клетки в увлажненном гипоксическом инкубаторе (1% O2 , 5% CO2 , 94% N2 , 37°C). Дихлорацетат натрия (Specials Lab, Prudhoe, Великобритания) был предоставлен фармацевтическим отделением больницы St. James's University Hospital, Лидс, Великобритания.
Анализы МТТ
Клетки (1 × 10 4 ) на лунку высевали в 96-луночные планшеты для культивирования тканей. После ночной инкубации мы заменили среду на свежую среду, содержащую возрастающие дозы DCA (0, 10, 15, 20, 30, 50 и 100 мМ). Через 24 и 48 ч инкубации мы провели анализ МТТ, заменив среду на 50 мкл 1 мг мл -1 раствора МТТ, и планшеты инкубировали в темноте в течение 3 ч. Затем раствор МТТ удаляли, а темно-синие осадки формазана растворяли в 100 мкл пропан-1-ола. Оптическую плотность измеряли с помощью микропланшетного ридера (Opsys MR; Dynex Technologies Ltd, Worthing, West Sussex, UK) при 570 нм.
Анализы аннексина V и 7-AAD
Клетки высевали в колбы для культивирования тканей площадью 25 см2 и инкубировали в течение ночи в стандартных условиях. Среду заменяли свежей средой, содержащей ряд доз DCA (0, 10, 20 и 50 мМ). Анализ проточной цитометрии проводили после 24 и 48 ч инкубации. Клетки дважды промывали холодным PBS и ресуспендировали в 1 × связывающем буфере (BD Bioscience, Франклин Лейкс, Нью-Джерси, США) при концентрации 5 × 106 клеток на мл. 100 мкл раствора (5 × 105 клеток ) переносили в культуральные пробирки объемом 5 мл. Эти клетки окрашивали 5 мкл аннексина V-FITC и 10 мкл 7-AAD (BD Bioscience), осторожно встряхивали и инкубировали при комнатной температуре в течение 15 мин в темноте. После этого в каждую пробирку добавляли 400 мкл однократного связывающего буфера и анализировали в течение часа на проточном цитофлуориметре LSR II (BD Bioscience).
Анализы с йодидом пропидия
Клетки размножали, как указано для анализа апоптоза. Использовали дихлорацетат (50 мМ) и сравнивали с контролем-носителем. После сбора мы ресуспендировали клетки в 350 мкл PBS в концентрации 0,5–1,0 × 10 6 клеток на мл. К суспензии клеток добавляли 100 мкл 0,25 мг мл -1 йодида пропидия (PI)/5% Triton (Sigma, Сент-Луис, Миссури, США). Затем добавляли 50 мкл 1 мг мл -1 рибонуклеазы A (Sigma). Пробирки с образцами тщательно встряхивали и инкубировали в течение 10 мин в темноте при комнатной температуре. Проточную цитометрию проводили на проточном цитометре LSR II (BD Bioscience), а данные анализировали с помощью программного обеспечения FlowJo (FlowJo, Эшленд, штат Орегон, США).
Измерения лактата
Измерения лактата в питательных средах проводились отделением химической патологии в General Infirmary, Leeds Teaching Hospitals NHS Trust. Клетки инкубировали в колбах площадью 25 см2 в течение ночи в нормоксии. На следующий день среду заменяли на ряд доз DCA (0, 10, 20 и 50 мМ). Через 48 часов инкубации мы собрали 2 мл среды во фторидные пробирки и немедленно перенесли в лабораторию химической патологии. Во время переноса пробирки хранились на льду. Уровни лактата измеряли с помощью автоматического анализатора (система Advia 1200 Chemistry; Siemens Healthcare Diagnostics, Кэмберли, Суррей, Великобритания).
Анализы TMRM
Клетки обрабатывали DCA, как описано для анализа апоптоза. После 24 и 48 ч инкубации мы промывали клетки в PBS и суспендировали 1 × 10 6 клеток на мл в буферном солевом растворе Хэнкса с 50 нМ метиловым эфиром тетраметилродамина (TMRM) (Invitrogen). 100 мкл клеточной суспензии (1 × 10 5 клеток на лунку) переносили в непрозрачные 96-луночные планшеты, инкубировали в течение 30 мин и измеряли флуоресценцию при 530/620 нм при 37 °C с помощью планшетного ридера (Mithras LB 40; Berthold Technologies, Bad, Wildbad, Германия).
Вестерн-блоттинг
Клетки обрабатывали DCA, как описано выше. Через 8 ч обработки мы извлекали белки из клеток в буфере Лэммли (2% SDS, 10% глицерина, 0,7% 2-меркаптоэтанола, 0,05% бромфенолового синего и 0,5 M Tris-HCl). Лизаты разделяли электрофорезом на гелях NuPAGE Novex 12% Bis-Tris (Invitrogen) в буфере MOPS-SDS (Invitrogen). Белки переносили на поливинилиденфторидную мембрану (GE Healthcare, Chalford St Giles, Bucks, UK). Мембрану блокировали в течение 1 ч при комнатной температуре в 5% обезжиренном молоке в TBS-T (трис-буферный физиологический раствор с 0,1% Tween). Затем мембрану зондировали первичными антителами в 1% обезжиренном молоке в TBS-T в течение 90 мин, промывали в TBS-T, а затем зондировали соответствующим вторичным антителом, конъюгированным с пероксидазой хрена (HRP), в течение 60 мин. Первичные антитела: кроличьи поликлональные фосфодетектные анти-PDH-E1 α (pSer 293 ), 1 : 500 (AP1062; EMD Chemicals, Дармштадт, Германия), и мышиные моноклональные анти-PDHE1 α , 1 : 500 (459400; Invitrogen). Вторичные антитела антикроличьи или антимышиные конъюгаты HRP, 1 : 1000 (Dako, Glostrup, Дания). Белки визуализировали с помощью хемилюминесцентного субстрата Supersignal West Pico или Femto (Pierce Biotechnology, Рокфорд, Иллинойс, США) и системы Chemidoc XRS (Bio-Rad, Геркулес, Калифорния, США). В качестве контроля нагрузки использовали β -актин.
Статистический анализ
Данные проточной цитометрии были получены с использованием специального программного обеспечения, BD FACSDiva 6.0 и программного обеспечения FlowJo. Статистический анализ был выполнен с использованием SPSS для Windows (SPSS версии 15.0, Чикаго, Иллинойс, США). Различия между группами, получавшими DCA, и контрольными группами, получавшими плацебо, оценивались с использованием U -критерия Манна-Уитни и 95% доверительных интервалов разницы средних значений между двумя группами. Значение P менее 0,05 считалось статистически значимым. Данные представлены как среднее значение по меньшей мере из трех независимых экспериментов, а планки погрешностей представляют собой стандартное отклонение среднего значения.
Результаты
DCA снижает пролиферацию раковых клеток, и эффект схож при нормоксии и гипоксии
Во-первых, мы хотели определить, ингибирует ли лечение DCA клеточную пролиферацию и будет ли дифференциальный ответ в раковых и нераковых клетках в нормоксических и гипоксических условиях. Что касается гипоксии, наша гипотеза заключалась в том, что влияние DCA будет особенно сильным при уровнях кислорода, которые недостаточны для поддержки дополнительного окислительного фосфорилирования. Все клеточные линии (HB2, 293, HT29, SW480 и LoVo) обрабатывали диапазоном доз DCA в течение 24–48 ч в нормоксических и гипоксических условиях. Относительное количество клеток оценивали с помощью анализов MTT.
Обработка возрастающими дозами DCA снижала клеточную пролиферацию дозозависимым образом (рисунок 1A-D). Вопреки нашим ожиданиям, профили снижения роста клеток были схожи при гипоксии и нормоксии. Через 24 и 48 ч до 20 мМ DCA не влияли на рост культур нераковых клеток, HB2 и 293. Однако 20 мМ DCA значительно снижали рост культур всех трех линий клеток колоректального рака ( P ⩽ 0,009). Эффект DCA был сильнее на слабодифференцированных клетках SW480 и метастатических клетках LoVo, чем на хорошо дифференцированных клетках HT29. Рост культур клеток LoVo, обработанных 20 мМ DCA, снижался до 40% по сравнению с клетками, обработанными контрольным раствором. Поскольку наблюдалась сравнительно небольшая разница в снижении роста культур, обработанных ДХА в условиях гипоксии и нормоксии, дальнейшие эксперименты проводились только в условиях нормоксии.
Рисунок 1. Дихлорацетат (20 мМ) не оказал значительного снижения роста культур нераковых клеток 293 и HB2, но вызвал значительное снижение роста культур всех клеток колоректального рака ( * P ⩽ 0,009). Клетки обрабатывали различными дозами DCA или контрольным раствором в условиях нормоксии ( A и C ) или гипоксии ( B и D ), а относительное количество жизнеспособных клеток оценивали через 24 ч ( A и B ) и 48 ч ( C и D ) с помощью анализа МТТ. Данные выражены в процентах от контроля (доза 0 мМ) ( * – значительное различие относительно контроля – белый столбец (0 мМ)).
DCA способствует апоптозу в раковых клетках, щадя нераковые клетки
Далее мы хотели исследовать, было ли связано снижение роста культур при обработке DCA с индукцией апоптоза. Клетки обрабатывали диапазоном доз DCA (0, 10, 20 и 50 мМ) в течение 24 и 48 ч, и доля клеток, подвергающихся апоптозу, оценивалась путем обнаружения мембранного фосфатидилсерина с аннексином V-FITC. Клетки окрашивали аннексином V-FITC и витальным красителем 7-AAD и анализировали с помощью проточной цитометрии. Была дозозависимая индукция апоптоза в линиях раковых клеток через 24 и 48 ч обработки, с небольшим, если вообще, апоптозом, вызванным в нераковых клетках (рис. 2A и B). Наибольший эффект наблюдался в метастатических клетках LoVo; 50 мМ DCA вызвал десятикратное увеличение доли апоптотических клеток через 48 ч, тогда как наблюдалось семи- и пятикратное увеличение клеток HT29 и SW480 соответственно. Увеличение среднего процента от общего числа апоптотических клеток при 50 мМ DCA составило: 2,8 (95% ДИ: 2–3) в клетках HT29, 3,5 (95% ДИ: 2–5) в клетках SW480 и 21 (95% ДИ: 8–34) в клетках LoVo. Был минимальный апоптоз, индуцированный в 293 клетках даже при 50 мМ DCA, 0,2 (95% ДИ: −0,2 до 0,6). В клетках HB2 наблюдалось незначительное снижение процента апоптотических клеток при обработке 50 мМ DCA, −0,9 (95% ДИ: −2,2 до 0,4).
Рисунок 2. Дихлорацетат индуцировал дозозависимое увеличение процента апоптотической популяции в раковых клетках с минимальным апоптозом в нераковых клетках. Клетки обрабатывали дозами DCA в течение 24 ч ( A ) и 48 ч ( B ), окрашивали аннексином V-FITC и 7-AAD и анализировали с помощью проточной цитометрии. Точки данных представляют собой среднее значение (±sd) трех независимых экспериментов для 0 и 50 мМ DCA ( * – значимое различие относительно контроля).
DCA вызывает остановку фазы G 2 в клетках колоректального рака, но не влияет на профиль клеточного цикла нераковых клеток 293
Мы также хотели изучить, было ли снижение роста культур при обработке DCA связано с индукцией остановки роста. Клетки обрабатывали 50 мМ DCA в течение 24 или 48 ч, а профили клеточного цикла анализировали с помощью проточной цитометрической оценки содержания ДНК после окрашивания PI. Обработка дихлорацетатом вызвала изменения в профилях клеточного цикла всех раковых клеток, но не повлияла на нераковые клетки. Изменения в профиле клеточного цикла были обнаружены через 24 ч обработки и сохранялись через 48 ч (рисунок 3A и B).
Рисунок 3. Дихлорацетат вызвал остановку фазы G 2 в клетках колоректального рака без влияния на профили клеточного цикла нераковых клеток; 293 и HB2. Клетки обрабатывали 50 мМ DCA или контрольным раствором в течение 24 ч ( A ) и 48 ч ( B ), окрашивали PI и анализировали с помощью проточной цитометрии. Для анализа статистической значимости мы сравнили среднюю долю клеток в каждой фазе клеточного цикла (G 1 , S и G 2 ) в клетках, обработанных DCA, со средней долей клеток в соответствующих фазах в необработанных клетках ( * – значимое различие по сравнению с контролем).
После 48 ч обработки 50 мМ DCA наблюдалось восьмикратное увеличение клеток в фазе G 2 в клетках HT29 и SW480 и трехкратное увеличение клеток LoVo. Увеличение среднего процента всех раковых клеток в фазе G 2 составило: 21 (95% ДИ: 13–30) для клеток HT29, 19 (95% ДИ: 13–24) для клеток SW480 и 14 (95% ДИ: 10–21) для клеток LoVo; тогда как не было никакой разницы в клетках 293, 1 (95% ДИ: −4 до 7), и клетках HB2, −0,3 (95% ДИ: −9 до 9). Было соответствующее уменьшение клеток в фазе G 0 /G 1 во всех линиях раковых клеток. Интересно, что в клетках HT29 наблюдалось небольшое снижение, но в клетках SW480 и LoVo наблюдалось значительное увеличение доли клеток, считающихся находящимися в фазе S (см. раздел «Обсуждение»). Профиль клеточного цикла клеток 293 и HB2 изменился минимально при обработке DCA.
DCA снижает внеклеточный уровень лактата в питательной среде
Чтобы установить, коррелируют ли изменения в росте и апоптозе, вызванные DCA, со снижением гликолиза, мы измерили уровни лактата в ростовой среде. Молочная кислота является конечным продуктом гликолиза. Если бы DCA вызывал митохондриальное окислительное фосфорилирование, пируват декарбоксилировался бы до ацетил-КоА и не восстанавливался бы до лактата, следовательно, уровни лактата в ростовой среде снизились бы. Уровни лактата в ростовой среде всех клеточных линий измеряли через 48 ч обработки диапазоном доз DCA (рисунок 4). Уровни лактата определяли с помощью автоматического анализатора, который обычно используется для биохимического измерения уровней лактата; анализы основаны на колориметрической реакции, катализируемой лактатоксидазой. Обработка DCA снижала внеклеточные уровни лактата в ростовой среде дозозависимым образом во всех раковых и нераковых клеточных линиях.
Рисунок 4. Дихлорацетат снижал уровень лактата в питательной среде в зависимости от дозы как в раковых, так и в нераковых клетках. Клетки обрабатывались различными дозами DCA в течение 48 часов, а внеклеточные уровни лактата измерялись в питательной среде с помощью автоматического анализатора. Результаты выражены как относительные к контролю.
DCA деполяризует внутреннюю митохондриальную мембрану в клетках колоректального рака, но не в нераковых клетках
Чтобы проверить, была ли индукция апоптоза в раковых клетках при лечении DCA связана с усилением митохондриального окислительного фосфорилирования, мы измерили внутренний митохондриальный мембранный потенциал (ΔΨm). Эскалация митохондриального дыхания реактивировала бы цепь переноса электронов и снизила бы гиперполяризованный ΔΨm в раковых клетках. Клетки обрабатывали дозами DCA в течение 24 и 48 часов и окрашивали красителем TMRM, который позволяет проводить флуоресцентное измерение ΔΨm.
Как и в предыдущих экспериментах, эффект DCA был очевиден через 24 часа обработки и сохранялся через 48 часов (рисунок 5A и B). Обработка дихлорацетатом снизила гиперполяризованный ΔΨm во всех раковых клетках дозозависимым образом. Дихлорацетат не оказал никакого влияния на ΔΨm нераковых клеток HB2, тогда как, что удивительно, ΔΨm нераковых клеток 293 увеличился дозозависимым образом. Через 24 часа обработки 50 мМ DCA значительно снизили ΔΨm во всех раковых клетках; однако в клетках LoVo наблюдалось значительное снижение даже при 20 мМ DCA (рисунок 5A, P = 0,02). В нераковых клетках 293 наблюдалась тенденция к увеличению ΔΨm при обработке DCA, хотя это не было статистически значимым ( P = 0,08). Через 48 ч лечения наблюдалось значительное снижение ΔΨm во всех раковых клетках и увеличение в 293 клетках при 20–50 мМ DCA (рисунок 5B, P ⩽ 0,04).
Рисунок 5. Обработка дихлорацетатом снизила внутренний митохондриальный мембранный потенциал (ΔΨm) во всех раковых клетках, увеличила ΔΨm в нераковых клетках 293 и не оказала никакого влияния на ΔΨm в нераковых клетках HB2. Клетки обрабатывали дозами DCA в течение 24 ч ( A ) и 48 ч ( B ), окрашивали TMRM, а флуоресценцию измеряли при 530/620 нм при 37°C ( * – значительная разница по сравнению с контролем).
Обработка DCA приводит к дефосфорилированию субъединицы PDHE1 α
. Считается, что DCA ингибирует все четыре изофермента PDK и, следовательно, снижает фосфорилирование субъединицы PDHE1 α , что, в свою очередь, приводит к активации комплекса PDH. Чтобы проверить, происходило ли дефосфорилирование PDHE1 α при обработке DCA в используемых клеточных линиях, мы использовали вестерн-блот-анализы лизатов обработанных и необработанных клеток DCA. Во всех клеточных линиях обработка 20 мМ DCA в течение 8 ч вызвала резкое снижение сигнала фосфорилирования на сайте pSer 293 , но никаких изменений в уровнях общего PDHE1 α обнаружено не было (рисунок 6). Фосфо-специфические антитела для двух других сайтов фосфорилирования, Ser 232 и Ser 300 , пока не доступны в продаже.
Рисунок 6. Обработка дихлорацетатом снизила фосфорилирование PDHE1 α на сайте pSer 293 , не оказав влияния на уровни общего PDHE1 α во всех исследованных клеточных линиях. Лизаты цельных клеток были приготовлены после обработки клеток 20 мМ DCA в течение 8 ч и из необработанных клеток, и были проведены анализы вестерн-блоттинга.
Обсуждение
Мы показали, что DCA вызывает дозозависимое снижение роста in vitro культур колоректальных раковых клеток и нераковых клеток. Однако раковые клетки были более чувствительны к DCA, при этом доза 20 мМ вызывала значительное ингибирование роста раковых клеток, но оказывала незначительное влияние на нераковые клетки. Мы показали, что компоненты этого дифференциального эффекта следующие: мощная индукция апоптоза и остановка клеточного цикла в раковых клетках, но не в нераковых клетках.
Эти выводы подтверждают простую модель дифференциальной чувствительности к DCA. Однако некоторые данные требуют дальнейшего обсуждения. Во-первых, 50 мМ DCA снизили рост культур нераковых клеток 293 и HB2, однако не наблюдалось увеличения апоптотических клеток или изменения профиля клеточного цикла этих клеток. Возможным объяснением этих результатов может быть то, что эта доза DCA привела к более медленному прохождению этих нераковых клеток через все стадии клеточного цикла, не изменяя относительных пропорций в пределах каждой стадии. Во-вторых, наши результаты указывают на то, что DCA вызвал остановку G 2 в клетках колоректального рака. Это контрастирует с предыдущими исследованиями, которые показали остановку G 1 или отсутствие изменений в профиле клеточного цикла при лечении DCA (Cao et al, 2008; Wong et al, 2008). Wong et al (2008) показали повышенную экспрессию PUMA во всех линиях клеток эндометриального рака, которые имели апоптотический ответ на DCA, и пришли к выводу, что эта активация p53 привела к остановке G 1. Однако клетки колоректального рака в нашем исследовании остановились в фазе G 2 при лечении DCA, и мы не обнаружили никакой индукции p53 DCA в наших линиях клеток колоректального рака (данные не показаны). Интересно, что Cao et al (2008) обнаружили, что сочетание DCA и радиотерапии остановило клетки рака простаты в фазе G 2 , хотя DCA сам по себе не влиял на профиль клеточного цикла. В-третьих, в клетках SW480 и LoVo лечение DCA привело к увеличению доли клеток, которые, как считается, находятся в фазе S. Это предполагает увеличение пролиферации, а также индукцию апоптоза. Аналогичное открытие было сообщено Wong et al (2008) в одной из нескольких протестированных клеток эндометриального рака. Альтернативное объяснение заключается в том, что часть клеток, находящихся в «S-фазе» после обработки линий раковых клеток DCA, на самом деле представляют собой апоптотические клетки в области «sub-G2 » , как это было ранее описано для клеток лимфомы (Klucar и Al-Rubeai, 1997).
Изменения в клеточном метаболизме при лечении DCA
DCA, по-видимому, подавлял выработку молочной кислоты из пирувата как в раковых, так и в нераковых клетках. Кроме того, лечение DCA приводило к дефосфорилированию PDHE1 α и, следовательно, активации PDH во всех исследованных клеточных линиях. Следовательно, основа дифференциального эффекта DCA на раковые и нераковые клетки может заключаться в его влиянии на митохондриальную функцию. Лечение DCA снижало высокий ΔΨm всех раковых клеток, но не нераковых клеток. Это говорит о том, что DCA, ингибируя PDK и, следовательно, активируя PDH, стимулирует митохондриальное дыхание, что приводит к деполяризации внутренней митохондриальной мембраны, и индуцирует апоптоз по проксимальному митохондриальному пути, как описано в предыдущих исследованиях (Bonnet et al, 2007; Cao et al, 2008; Wong et al, 2008). Индукция апоптоза и изменения в митохондриальной функции были наиболее выражены в высокоинвазивных и метастатических клетках LoVo, чем в менее инвазивных клетках HT29 и SW480. Это может иметь клинические последствия для лечения метастатического колоректального рака, поскольку обычно именно высокоинвазивные метастатические раковые опухоли наиболее устойчивы к традиционной химиотерапии и могут быть наиболее чувствительны к ингибированию PDK. В поддержку этого недавнее исследование показало, что колоректальные опухоли, устойчивые к 5-фторурацилу, с большей вероятностью имеют повышенный гликолиз и, следовательно, более поддаются терапии, направленной на метаболизм рака (Шин и др., 2009). В этом отношении наши результаты противоречат выводам Вонга и др. (2008), которые обнаружили, что высокоинвазивные клетки рака эндометрия наиболее устойчивы к лечению DCA.
Ингибирование PDK в качестве терапии рака против колоректального рака
Мы обнаружили, что дозы 20–50 мМ DCA давали дифференциальные ответы между раковыми и нераковыми клетками. Таким образом, потенциальные терапевтические дозы DCA будут находиться в диапазоне от 20 до 50 мМ. Кроме того, недавнее исследование показало, что IC 50 DCA для клеток рака молочной железы составляет от 20 до 30 мМ (Ko и Allalunis-Turner, 2009). Это контрастирует с предыдущими исследованиями, в которых сообщалось, что DCA снижает пролиферацию и вызывает апоптоз в раковых клетках при дозах всего 0,5–10 мМ (Bonnet et al, 2007; Wong et al, 2008; Sun et al, 2009). Было обнаружено, что дихлорацетат относительно безопасен для людей при использовании для лечения лактоацидоза (Stacpoole et al, 2003). Основные побочные эффекты при дозе до 100 мг/кг DCA оказываются на нервную систему и печень, вызывая легкую седацию или сонливость, обратимую периферическую невропатию и легкое бессимптомное повышение уровня сывороточных трансаминаз, отражающее повреждение гепатоцеллюлярной ткани (Stacpoole et al, 1998). Кроме того, недавние исследования показали, что DCA эффективно снижает рост опухоли в клинически достижимых дозах как in vitro , так и in vivo (Bonnet et al, 2007; Sun et al, 2009). Было высказано предположение, что DCA может быстро перейти на раннюю фазу клинических испытаний рака (Michelakis et al, 2008). Однако доза DCA, необходимая для ингибирования роста клеток колоректального рака в нашем исследовании, вряд ли будет достигнута клинически без возникновения значительных побочных эффектов. Доза DCA, необходимая для достижения эквивалентных концентраций в плазме in vivo, будет примерно в пять-десять раз больше, чем та, которая используется в клинических испытаниях против лактатацидоза. Похоже, что клетки колоректального рака, использованные в нашем исследовании, более устойчивы к DCA, чем клетки рака легких, эндометрия и молочной железы. Интересно, что Сан и др. (2009) в своем исследовании клеток рака молочной железы обнаружили, что DCA подавляет пролиферацию раковых клеток, но не вызывает апоптоз или гибель клеток. Эти результаты заметно отличались от эффектов DCA, наблюдаемых на клетках рака легких (Бонне и др., 2007), эндометрия (Вонг и др., 2008) и колоректального рака в нашем исследовании. Таким образом, хотя DCA подавляет рост различных раковых клеток, эффект и основные механизмы, по-видимому, зависят от типа клеток. Вероятным объяснением этих дифференциальных эффектов может быть разница в экспрессии изоферментов PDK в исследованных раковых клетках. Дихлорацетат является неспецифическим ингибитором PDK (Whitehouse и Randle, 1973) и имеет различную Ki для каждого из четырех изоферментов PDK (Bowker-Kinley et al ,1998). Кроме того, известно, что четыре изофермента PDK по-разному экспрессируются в различных тканях. Таким образом, необходимо разработать ингибиторы для отдельных изоферментов PDK, которые должны позволять проводить специфичные для типа раковых клеток метаболические манипуляции.