Тэг: рак легких

Влияние дихлорацетата натрия как отдельного препарата, так и в составе комбинированной терапии на рост и метастазирование опухолей легких

Влияние дихлорацетата натрия как отдельного препарата, так и в составе комбинированной терапии на рост и метастазирование опухолей легких


оригинал статьи: https://www.academia.edu/65113034/Impact_of_Sodium_Dichloroacetate_Alone_and_in_Combination_Therapies_on_Lung_Tumor_Growth_and_Metastasis?email_work_card=title


Айя Аль-Азави


1, Шахразада Сулейман


1, Холуд Арафат


1, Джавед Ясин 2


, Абдеррахим Неммар 3,4


и Самир Аттуб 1,4,5,*

 

 


  • Кафедра фармакологии и терапии, Колледж медицины и наук о здоровье, Университет Объединенных


Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты; 201870001@uaeu.ac.ae (AA-A.); sharazadjeffy@uaeu.ac.ae (SS); kholoud.arafat@uaeu.ac.ae (KA)


  • Кафедра медицины, Колледж медицины и медицинских наук, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты; yasin@uaeu.ac.ae Кафедра
  • физиологии, Колледж медицины и медицинских наук, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты; anemmar@uaeu.ac.ae Центр
  • медицинских наук имени Заида, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские
  • Эмираты Национальный институт здравоохранения и медицинских исследований (INSERM), 75013 Париж,


Франция * Адрес для корреспонденции: samir.attoub@uaeu.ac.ae

 


Комбинированная терапия легких Рост опухоли и метастазы. Int. J. Молекулярные науки 2021, 22, 12553. https:// doi.org/10.3390/ijms222212553

 

Получено: 24 октября 2021 г.

 

Принято: 17 ноября 2021 г.

Опубликовано: 21 ноября 2021 г.


Аннотация: Метаболическое перепрограммирование признано важнейшим признаком нового рака. Сообщалось, что дихлорацетат (DCA), ингибитор киназы пируватдегидрогеназы (PDK), обладает противораковыми эффектами, обращая вспять гликолиз, связанный с опухолью. Это исследование было проведено с целью изучения противоракового потенциала DCA при раке легких как отдельно, так и в сочетании с химиотерапией и таргетной терапией с использованием двух клеточных линий немелкоклеточного рака легких (НМРЛ), а именно A549 и LNM35.

DCA заметно вызывал зависящее от концентрации и времени снижение жизнеспособности и роста колоний клеток A549 и LNM35 in vitro. DCA также снижал рост опухолевых ксенотрансплантатов как в хориоаллантоисной мембране куриного эмбриона, так и в моделях голых мышей in vivo. Кроме того, DCA снижал ангиогенную способность эндотелиальных клеток пупочной вены человека in vitro. С другой стороны, DCA не ингибировал клеточную миграцию и инвазию in vitro , а также заболеваемость и рост метастазов подмышечных лимфатических узлов in vivo у голых мышей. Лечение DCA не показало никакой токсичности у куриных эмбрионов и голых мышей. Наконец, мы продемонстрировали, что DCA значительно усиливал противораковый эффект цисплатина в LNM35. Кроме того, сочетание DCA с гефитинибом или эрлотинибом приводит к аддитивным эффектам на ингибирование роста колоний LNM35 после семи дней лечения и к синергетическим эффектам на ингибирование роста колоний A549 после 14 дней лечения. В совокупности это исследование демонстрирует, что DCA является безопасным и перспективным терапевтическим средством для лечения рака легких.


Рак легких является вторым по частоте встречаемости видом рака с самым высоким уровнем смертности в мире, составив 2,2 миллиона случаев и 1,8 миллиона смертей в 2020 году. Прогнозируется, что заболеваемость и смертность продолжат расти примерно на 60%, до предполагаемых 3,6 миллиона и 3 миллионов соответственно в 2040 году [1]. Большинство случаев рака легких — это НМРЛ, на которые приходится 80–85% всех случаев рака легких [2]. Развитие таргетной и иммунотерапии произвело революцию в лечении НМРЛ. Однако побочные эффекты, резистентность и эффективность в небольшой терапевтически чувствительной группе пациентов создают неравенство в доступе к таким агентам [3–5]. Таким образом, это подчеркивает необходимость более безопасных и эффективных агентов. Метаболическое перепрограммирование является одним из признаков рака, который является многообещающей целью для разработки эффективных терапевтических подходов [6]. По сравнению с

Нормальные клетки, которые в основном полагаются на митохондриальное окислительное фосфорилирование (OXPHOS) в аэробных условиях, раковые клетки отклоняются от этого нормального метаболического фенотипа, полагаясь в основном на цитозольный гликолиз и молочную ферментацию, даже в присутствии кислорода, чтобы удовлетворить потребности высокой пролиферации [7]. Это явление известно как эффект Варбурга, который использовался в качестве терапевтической мишени для подавления роста опухоли PDK входит в число основных ферментов, контролирующих гликолиз и OXPHOS [9]. Он отключает митохондриальный OXPHOS, фосфорилируя и ингибируя пируватдегидрогеназу (PDH), ключевой фермент, катализирующий окислительное превращение пирувата в ацетилкофермент А в митохондриях [10]. DCA — это препарат с небольшой молекулярной массой, который использовался при лактоацидозе, врожденных митохондриальных дефектах и диабете [11]. Интересно, что DCA продемонстрировал способность переключать метаболизм опухоли с цитозольного аэробного гликолиза на митохондриальный OXPHOS путем ингибирования PDK и повышения активности PDH [12]. Следовательно, сообщалось, что DCA оказывает противораковое действие за счет увеличения оттока цитохрома c и других факторов, индуцирующих апоптоз, а также повышения уровня ROS с последующей гибелью раковых клеток [11,13 15]. Однако в клинических исследованиях профиль безопасности DCA вызывал беспокойство. Тем не менее, Гарон и др. (2014), которые провели клиническое исследование с DCA на пациентах с раком легких, пришли к выводу, что: «в отсутствие более крупного контролируемого исследования четкие выводы относительно связи между неблагоприятными событиями у пациента и DCA неясны». Они рекомендовали рассматривать DCA с химиотерапией на основе платины при гипоксических опухолях, а не как единственный агент при распространенном немелкоклеточном раке легких [16]. Считается, что DCA является мощной молекулой , которая требует дальнейшего изучения ее противоракового потенциала при НМРЛ. Целью данного исследования было изучение влияния DCA на жизнеспособность клеток НМРЛ, рост колоний, миграцию и инвазию клеток in vitro, а также на рост опухоли, метастазирование и токсичность in vivo. Кроме того, непосредственное влияние DCA на ангиогенез оценивалось in vitro. Кроме того, мы исследовали влияние DCA в комбинированной терапии с химиотерапией и первым поколением ингибиторов тирозинкиназы EGFR (EGFR-TKi). 2. Результаты 2.1 Влияние DCA на жизнеспособность клеток и рост колоний линий клеток НМРЛ Эффект увеличения концентрации DCA (3,125–100 мМ) был исследован на двух линиях клеток NSCLC, а именно A549 и LNM35. Как показано на рисунке 1, DCA снижал жизнеспособность A549 (рисунок 1A) и LNM35 (рисунок 1B) в зависимости от концентрации и времени. Полумаксимальная ингибирующая концентрация (IC50) DCA через 48 ч составляет приблизительно 25 мМ для обеих линий клеток. Для дальнейшей оценки противоракового эффекта DCA было исследовано его влияние на рост предварительно сформированных колоний клеточных линий A549 и LNM35. Для этого обе клеточные линии выращивали при определенной плотности в течение 1 недели для формирования колоний, а затем обрабатывали возрастающей концентрацией DCA в течение 1 недели. Как показано на рисунке 1, DCA вызывал зависимое от концентрации сокращение числа колоний для обеих клеточных линий, с более высокой чувствительностью, показанной в колониях LNM35 (рисунок 1D,E) по сравнению с колониями A549 (рисунок 1C,E). Эти результаты подтверждают противораковый эффект DCA in vitro


Рисунок 1. Влияние DCA на жизнеспособность клеток НМРЛ и рост колоний. Экспоненциально растущие A549 (A) и LNM35 (B)

Рисунок 1. Влияние DCA на жизнеспособность клеток НМРЛ и рост колоний. Экспоненциально растущие раковые клетки A549 (A) и LNM35

(B) инкубировали в отсутствие или в присутствии увеличивающихся концентраций DCA (3,125–100 мМ) в течение 24, 48 и 72 ч. Жизнеспособность клеток оценивали, как описано в разделе «Материалы и методы». Эксперименты повторяли не менее трех раз. Формы представляют средние значения, столбцы представляют SEM. Раковые клетки A549 (C) и LNM35 (D) выращивали в течение 7 дней для формирования колоний, которые обрабатывали различными концентрациями DCA (6,25–50 мМ) в течение 7 дней, после чего колонии фиксировали, окрашивали и подсчитывали, как описано в разделе «Материалы и методы». (E) Репрезентативные фотографии контрольных и обработанных DCA колоний показаны для раковых клеток A549 и LNM35. Результаты представлены в виде процента колоний (среднее значение ± SEM) обработанных клеток по сравнению с контролем. * Значимо отличается при <0,05. ** Значимо отличается при <0,01. *** Значимо отличается при <0,001. **** Значимо отличается при <0,0001. ns — незначимо.

 


  • Влияние DCA на рост ксенотрансплантатов опухоли НМРЛ в курином эмбрионе CAM и голых мышах in vivo


 

Для подтверждения фармакологической значимости наших результатов in vitro противораковый эффект DCA оценивали in vivo с использованием анализа CAM куриного эмбриона.

Ксенотрансплантированные опухоли A549 и LNM35 на CAM обрабатывали 50 мМ DCA каждые 48 ч в течение 1 На E17 опухоли были извлечены из верхней части CAM и взвешены. Как показано на рисунке 2, 50 мМ

DCA значительно снизили рост ксенотрансплантатов опухоли A549 примерно на 40% (рисунок 2A), в то время как не показали значительного снижения роста ксенотрансплантатов опухоли LNM35 (рисунок 2B). Поэтому 100 мМ DCA были исследованы на ксенотрансплантатах опухоли LNM35, и они значительно снизили рост примерно на 40% (рисунок 2C). Токсичность также оценивали путем сравнения процента живых эмбрионов в контрольной и обработанной DCA группах. На E17 DCA не показал цитотоксичности, поскольку процент живых эмбрионов был схож с контрольной и обработанной DCA (рисунок 2D–F).



Рисунок 2. Влияние DCA на рост ксенотрансплантатов опухолей A549 и LNM35 в CAM куриного эмбриона in vivo. (A)

Масса опухоли раковых клеток A549, ксенотрансплантированных на CAM с плотностью 1 миллион клеток после обработки лекарственным раствором (0,9% NaCl) или DCA (50 мМ) в течение 1 недели. (B, C) Масса опухоли раковых клеток LNM35, ксенотрансплантированных на CAM с плотностью 0,3 миллиона клеток после обработки лекарственным раствором (0,9% NaCl) или DCA (50 мМ и 100 мМ). (D) Процент живых эмбрионов в контрольных и обработанных DCA ксенотрансплантатах A549. (E, F) Процент живых эмбрионов в контрольных и обработанных DCA ксенотрансплантатах LNM35. Столбцы — средние значения; полосы — SEM *** Значительно отличается при <0,001. **** Значительно отличается при <0,0001. ns — незначимо.

Влияние DCA на опухолевые ксенотрансплантаты также оценивалось in vivo с использованием бестимусных мышей, инокулированных клетками A549 и LNM35. Сообщалось, что средние летальные дозы (LD50) DCA составляли 4,5 г/кг и 5,5 г/кг у крыс и мышей соответственно [17]. Поэтому мыши с опухолевыми ксенотрансплантатами A549 получали перорально ежедневно (5 дней в неделю) 50 мг/кг и 200 мг/кг DCA в течение 38 последовательных дней. Лечение DCA (50 мг/кг) не вызвало значительного уменьшения объема опухолевых ксенотрансплантатов A549, в то время как DCA (200 мг/кг) значительно

уменьшил объем примерно на 45% (рисунок 3A). Аналогичная разница наблюдалась также в весе опух Не было выявлено никаких явных признаков токсичности или каких-либо проявлений нежелательного воздействия DCA на поведение животных, массу тела (рисунок 3C), компоненты крови, функцию

печени и почек (рисунок 3D).


Рисунок 3. Влияние DCA на рост ксенотрансплантата A549, привитого голым мышам in vivo. (A) Объем опухоли ксенотрансплантата A549, привитого подкожно голым мышам и леченного DCA (50 и 200 мг/кг) перорально или только контрольным раствором- носителем в течение 38 дней. (B) Вес опухоли, полученный от тех же контрольных и обработанных DCA голых мышей. (C) Средний вес тела мышей в течение дней лечения. (D) Образцы крови мышей анализировались на общий анализ крови, параметры функции

печени и почек. Результаты представляют собой среднее значение ± SEM для 9–10 мышей/группу. * Значительно отличается при <0,05.

** Значимое различие при <0,01. ns — несущественно.

С другой стороны, наблюдался рост ксенотрансплантатов опухоли LNM35, и мыши получали перорально 200 мг/кг и 500 мг/кг DCA каждый день (5 дней в неделю) в течение 10 и 24 дней соответственно. Лечение DCA (200 мг/кг) вызвало незначительное уменьшение объема ксенотрансплантатов опухоли LNM35 (рисунок 4A), в то время как DCA (500 мг/кг) значительно уменьшил объем опухоли почти на 75% (рисунок 4B). Почти такие же различия были замечены в весе опухоли в конце экспериментов (рисунок 4C). Никаких признаков токсичности не наблюдалось в поведении животных или не было обнаружено по весу мышей (рисунок 4D,E), компонентам крови, печени и функции почек (рисунок 4F)


Рисунок 4. Влияние DCA на рост ксенотрансплантата LNM35, привитого голым мышам in vivo. (A, B) Объем опухоли ксенотрансплантата LNM35, привитого подкожно голым мышам и обработанного соответственно DCA (200 и 500 мг/кг) перорально или только контрольным раствором-носителем ежедневно в течение 10 и 24 дней. (C) Вес опухоли, полученный от контрольных и голых мышей, получавших DCA в дозе 500 мг/кг. (D, E) Средний вес тела мышей в течение дней лечения. (F) Образцы крови мышей анализировались на общий анализ крови, параметры функции печени и почек. Результаты представляют собой среднее значение

± SEM для 9–11 мышей/группу. * Значимо отличается при <0,05. ** Значимо отличается при <0,01. *** Значимо отличается при

<0,001. ns — статистически незначимо.

 


  • Влияние DCA на формирование капилляроподобных структур и прорастание HUVEC in vitro


 

 

Ангиогенез является одним из признаков рака, который обеспечивает поставку питательных веществ и кислорода для роста и распространения раковых клеток. Влияние DCA на ангиогенез было исследовано in vitro с использованием HUVEC, которые могут образовывать капилляроподобные структуры при засевании

на Матригель. Как показано на рисунке 5A, HUVEC образовали организованные капилляроподобные структуры

структуры в отсутствие DCA, и эта организация была нарушена после добавления DCA.

Длины трубок измеряли вручную (рисунок 5B) и с помощью анализа изображений Wimasis (рисунок 5C), и было обнаружено, что 25 мМ DCA способны значительно ингибировать способность HUVEC формировать нитевидные структуры примерно на 30–40%. Это ингибирование наблюдалось при концентрациях

Рисунок 5. Влияние DCA на формирование капилляроподобных структур HUVEC in vitro. (A) Формы ангиогенеза , индуцированные в HUVEC, культивируемых на матрице Matrigel в 96-луночном планшете в отсутствие и в присутствии различных концентраций DCA. Для контрастной фотографии использовался инвертированный микроскоп (4×) , а для уточнения изображений использовалось программное обеспечение Wimasis. (B,C) Количественная оценка тубулярного ангиогенеза, индуцированного в клетках HUVEC, культивируемых в отсутствие и в присутствии DCA (6,25–

25 мМ) вручную и с использованием программного обеспечения Wimasis соответственно. (D) Жизнеспособность клеток HUVEC определялась, как описано в разделе «Материалы и методы», в отсутствие и в присутствии DCA (6,25–25 мМ). Эксперименты повторяли не менее 3 раз.

Столбцы представляют средние значения; полосы представляют SEM *** Значимо отличается при <0,001. **** Значимо отличается при <0,0001. ns — незначимо.

В анализе прорастания сфероиды HUVECs были встроены в 3D коллагеновую матрицу в присутствии и отсутствии VEGF 30 нг/мл, DCA 25 мМ или комбинации VEGF и DCA. Рисунок 6A показывает в репрезентативном эксперименте, что проростки, образованные в

присутствии VEGF, были ингибированы DCA, 25 мМ. Были измерены общие длины проростков, и было обнаружено, что общая длина была значительно увеличена в присутствии VEGF, а

DCA значительно уменьшил длину проростков, индуцированных VEGF (Рисунок 6B). Это ингибирование наблюдалось при концентрации, которая не показала никакого снижения жизнеспособности HUVECs (Рисунок 6C).

Эти данные свидетельствуют о том, что ингибирование ангиогенеза в опухолях может быть потенциальным механизмом, выходящим за рамки противоракового действия DCA.

Рисунок 6. Влияние DCA на образование ростков встроенными сфероидами HUVECs in vitro. (A) Представитель Рисунок 6. Влияние DCA на образование ростков встроенными сфероидами HUVECs in vitro. (A) Представительные изображения предварительно окрашенных

сфероидов HUVEC через 24 часа после встраивания в коллагеновую матрицу в присутствии VEGF 30 нг/мл, DCA 25 мМ или VEGF + DCA. Использовался инвертированный микроскоп с 20-кратным увеличением. (B) Среднее значение общей длины ростков различных сфероидов для каждого условия из одного представительного эксперимента. (C) Жизнеспособность HUVECs определялась, как описано в разделе «Материалы и методы». Эксперименты были повторены 2 раза. Столбцы представляют средние значения 12 сфероидов; столбцы представляют SEM **** Значительно отличается при <0,0001. #### Значимое отличие при <0,0001. ns: незначимо.


  • Влияние DCA на метастазы НМРЛ in vivo и инвазию и миграцию in vitro


Метастазирование — многоступенчатый процесс, включающий отделение клеток от первичной опухоли, миграцию клеток в соседние ткани с последующей инвазией клеток в кровь или лимфатическую систему до колонизации этих клеток в отдаленных органах. Влияние DCA на метастазирование у мышей, которым ксенотрансплантировали клетки рака легких с высокой степенью метастазирования, а именно LNM35, оценивали путем проверки веса и частоты подмышечных лимфатических узлов в контрольной и обработанной DCA группах. DCA снижает рост метастазов в лимфатических узлах, не достигая статистической значимости (рисунок 7A).

Кроме того, он не влияет на частоту метастазов в лимфатических узлах (рисунок 7B).

Для оценки способности DCA инвазировать и миграцию клеток A549 и LNM35 in vitro использовались анализ инвазии в камере Бойдена и анализ миграции при заживлении ран. Чтобы убедиться, что потенциальное влияние DCA на миграцию и инвазию не обусловлено гибелью клеток, мы использовали более низкие концентрации DCA. В этих условиях 6,25 мМ и

12,5 мМ DCA не смогли ингибировать клеточную инвазию LNM35 (рисунок 7C) и A549 (рисунок 7D). Аналогичным образом, эти концентрации не смогли ингибировать клеточную миграцию обеих клеточных линий (рисунок 7E–H).


  1. Обсуждение


 

Несмотря на недавние достижения в скрининге, диагностике и лечении рака легких, в дополнение к замечательному прогрессу в понимании его молекулярной биологии, рак легких является вторым наиболее часто диагностируемым видом рака с самым высоким уровнем смертности во всем мире в 2020 году [1].

Поэтому прилагаются различные усилия для разработки эффективных агентов и подходов с хорошими запасами безопасности для воздействия на рак легких в попытке обеспечить излечение или улучшить общую выживаемость пациента. Целью данного исследования было изучение влияния метаболического препарата DCA на рост, миграцию, инвазию и ангиогенез рака легких in vitro и рост опухоли и метастазы in vivo, а также влияние целевого метаболизма DCA на цитотоксический эффект одобренной химиотерапии и таргетной терапии в качестве шага к достижению лучшей эффективности и лучшего профиля безопасности.

 

Настоящее исследование показало, что DCA (3,125–100 мМ) вызывал зависящее от концентрации и времени снижение жизнеспособности клеток и роста предварительно сформированных колоний клеточных линий A549 и LNM35. IC50 DCA через 48 ч составлял приблизительно 25 мМ в обеих

клеточных линиях. Наши результаты согласуются с другими отчетами, в которых DCA (10–90 мМ) ингибировал


 

 

 

жизнеспособность клеток линий колоректального рака (КРР), а именно, SW620, LS174t, LoVo и HT-29, в зависимости от концентрации через 48 ч с диапазоном IC50 30–50 мМ в зависимости от типа клеточной линии [18]. Аналогичным образом, DCA (20 мМ) значительно снизил жизнеспособность клеток КРР, а именно, SW480, LoVo и HT-29 через 48 ч, с большим эффектом на плохо дифференцированные клетки SW480 и метастатические клетки LoVo по сравнению с хорошо дифференцированными клетками HT-29 [19]. С другой стороны, более высокая IC50 была зарегистрирована в клетках рака шейки матки, клетках Hela и SiHa [20], в то время как DCA (20 мМ) не смог ингибировать жизнеспособность клеток линии клеток рака молочной железы MCF-7 [21].

Наши данные in vitro были подтверждены путем тестирования влияния DCA на прогрессирование опухоли in vivo с использованием моделей CAM куриного эмбриона и бестимусных мышей. Во-первых, мы продемонстрировали, что значительное снижение роста было достигнуто в A549 и LNM35, ксенотрансплантированных на CAM куриного эмбриона, при использовании доз DCA 50 мМ и 100 мМ соответственно. Во время написания этой рукописи было опубликовано исследование, в котором изучалось

влияние натрия DCA на линии клеток глиобластомы U87 MG и PBT24, ксенотрансплантированных на CAM куриного Авторы сообщили об изменении роста опухолей U87 MG и PBT24 в ответ на различные концентрации натрия DCA. Сообщалось, что 10 мМ натрия DCA были эффективны в снижении роста опухоли PBT24,

но не роста опухоли U87, что отражает некоторые различия в биологии двух клеточных линий [22]. Во-вторых, мы продемонстрировали, что лечение DCA в дозах 200 мг/кг ежедневно (5 дней в неделю) вызвало значительное снижение роста ксенотрансплантированной опухоли A549 на 40%, в то время как для значительного снижения роста ксенотрансплантированной опухоли LNM35 требовалась более высокая доза DCA (500 мг/кг) . В этом контексте ранее сообщалось, что DCA (100 мг/кг) увеличил время удвоения опухолей A549 и H1975 NSCLC примерно с 3 до 6,5 дней [15], но не оказал значительного ингибирующего эффекта на мышей с опухолью MDA-MB-231 [23]. С другой стороны, значительная задержка роста также наблюдалась в ксенотрансплантатах HT-29, обработанных пероральным DCA (200 мг/кг) ежедневно в течение четырех дней [24].

 

Исследование токсичности потенциальных противораковых препаратов так же важно, как и исследование их эффективности, поскольку тяжелая токсичность может помешать их использованию в клинике. DCA не показал цитотоксичности для куриных эмбрионов и бестимусных мышей. Процент живых эмбрионов был одинаковым в группах, получавших DCA, и контрольных группах. Кроме того, DCA не повлиял на поведение мышей, вес, общий анализ крови, параметры функции печени и почек по сравнению с контрольной группой. Эти результаты согласуются с предыдущими доклиническими и клиническими отчетами, которые не показали никаких доказательств тяжелой гематологической, печеночной, почечной или сердечной токсичности при лечении DCA [13,14]. Немногие пациенты, получавшие лечение DCA, жаловались на общие желудочно-кишечные эффекты. Кроме того, наиболее распространенным ограничением для введения DCA является обратимая периферическая невропатия, которую можно свести

к минимуму путем снижения дозы или дополнительного введения антиоксидантов [11]. Включение DCA в системы доставки лекарств (СДЛ), такие как наночастицы, является перспективным подходом для сохранения противораковой активности DCA с минимальными побочными эффектами [25–27].

Сообщалось, что противораковый эффект DCA частично обусловлен индукцией апоптоза, как это наблюдалось в клетках колоректального рака [19] и клетках НМРЛ [15] , или ингибированием ангиогенеза. Ингибиторы ангиогенеза, такие как антитело к VEGF бевацизумаб и блокатор рецепторов VEGF рамуцирумаб, были клинически одобрены для лечения рака легких [28]. Несмотря на их подтвержденную эффективность, их скромные общие терапевтические эффекты с сопутствующими побочными эффектами подчеркивают очевидную необходимость в более эффективном подходе, нацеленном на ангиогенез [28]. Наше исследование показало, что DCA (25 мМ) является перспективным антиангиогенным средством, поскольку он способен значительно ингибировать образование и прорастание эндотелиальных клеток in vitro. Кроме того, более низкие концентрации DCA (6,25 и 12,5 мМ) не влияли на образование трубок HUVEC. Эти результаты согласуются с отчетом Шунджанса и его коллег, которые продемонстрировали, что 5 мМ и 10 мМ DCA не повлияли на формирование трубок HUVEC in vitro [29]. В соответствии с нашими данными, DCA вызвал снижение плотности микрососудов опухоли у обработанных крыс, у которых также было отмечено подавление HIF1α в опухолевых клетках [30]. С другой стороны, Чжао и его коллеги


 

 

 

Недавно сообщалось, что DCA стимулирует ангиогенез в модели сосудистой деменции у крыс за счет улучшения функции эндотелиальных клеток-предшественников [31].

Примерно у 30–40% пациентов с НМРЛ на момент постановки диагноза наблюдалось метастатическое заболевание . Отдаленные метастазы отрицательно влияют на варианты лечения, ответ и выживаемость

[32] и являются основной причиной смерти от рака легких [33]. Метастазирование — это многоступенчатый процесс, включающий отсоединение раковых клеток, миграцию, инвазию и колонизацию в отдаленных участках. Поэтому терапевтические агенты и схемы, уменьшающие такой отличительный признак рака, имеют большое значение в терапии рака. Несмотря на продемонстрированную антиангиогенную активность DCA, это исследование не показало влияния DCA на метастазирование клеток LNM35, ксенотрансплантированных бестимусным мышам, получавшим перорально эффективную дозу. В этом исследовании клетки LNM35, ксенотрансплантированные путем подкожной инокуляции бестимусным мышам, вызвали 90% случаев метастазов в подмышечных лимфатических узлах, и DCA не смог снизить частоту и рост этих метастазов в лимфатических узлах. Линия клеток LNM35 была создана в 2000 году как первая линия клеток рака легких человека, имеющая лимфогенные метастатические свойства со 100% частотой после подкожной инъекции в боковой бок голых мышей [34]. Кроме того, DCA не показал никаких ингибирующих эффектов на миграционные и инвазивные свойства клеток LNM35 и A549 in vitro. Аналогичным образом сообщалось, что монотерапия DCA не была эффективна в снижении метастазов в легких из метастатических клеток рака молочной железы, ксенотрансплантированных голым мышам [23].

Комбинированная терапия является фундаментальным подходом в лечении рака. Объединение различных противораковых препаратов позволяет воздействовать на различные основные сигнальные пути для усиления терапевтических преимуществ, избегания приобретенной резистентности и снижения тяжести побочных эффектов [35]. Химиотерапия играет неотъемлемую роль в лечении пациентов с НМРЛ. Обычно используется схема с платиной (цисплатин или карбоплатин) плюс паклитаксел, гемцитабин , доцетаксел, винорелбин, иринотекан или пеметрексед [36]. Неселективные характеристики химиотерапевтических агентов приводят к скромному увеличению выживаемости при значительной токсичности для пациента [37]. Это подчеркивает необходимость в более эффективных стратегиях для улучшения результатов лечения пациентов с минимальными побочными эффектами. В настоящем

исследовании DCA не удалось усилить противораковый эффект камптотецина и гемцитабина в обеих линиях клеток Н Кроме того, DCA не смог значительно усилить противораковые эффекты цисплатина в клеточной линии

A549 in vitro, но он усилил цитотоксический эффект цисплатина в клеточной линии LNM35, что отражает роль генетического фона раковых клеток в определении пути гибели клеток, вызванного препаратами. Ким и др. сообщили, что клетки A549 имеют более низкую скорость аэробного гликолиза по сравнению с клетками H460 из-за дифференциальной экспрессии некоторых метаболических ферментов [38]. Аэробный

гликолиз при раке был связан с химиорезистентностью, и ингибирование связанных путей было предложено в качестве механизма преодоления такой резистентности. Например, сверхэкспрессия PDK4 при раке мочевого пузыря высокой степени злокачественности заставляет совместное введение DCA с цисплатином вызывать резкое снижение роста опухоли по сравнению с DCA или цисплатином по отдельности [39].

Аналогичным образом, введение DCA с паклитакселом было описано как успешный подход к преодолению резистентных к паклитакселу клеток НМРЛ из-за сверхэкспрессии PDK2 [40]. Кроме того, Галгамува и др. заявили, что предварительное лечение DCA значительно ослабило нефротоксичность, вызванную цисплатином у мышей, сохранив противораковые эффекты цисплатина [41].

 

Открытие таргетной терапии помогло врачам адаптировать варианты лечения для пациентов с НМРЛ. Было разработано много таргетных препаратов, которые стали частью первой линии лечения НМРЛ, например, гефитиниб и эрлотиниб, которые считаются первым поколением EGFR-TKi [42]. Гефитиниб и эрлотиниб были одобрены более 10 лет назад для лечения пациентов с прогрессирующим мутантным EGFR НМРЛ, не получавших химиотерапию, в качестве первой линии лечения. Они также используются в качестве второй линии терапии после неудачи химиотерапии [43]. Некоторые отчеты показали, что эрлотиниб имеет хорошую эффективность у пациентов с EGFR - диким типом НМРЛ [44]. Поддерживающая доза может принести пользу этим пациентам после химиотерапии на основе платины, которая считается основной терапией при диком типе EGFR НМРЛ [45]. Несмотря на замечательные преимущества, многие пациенты приобрели терапевтическую резистентность через 10–14 месяцев лечения из-за вторичной мутации в гене EGFR [46].


 

 

 

В этом исследовании мы стремились изучить способность DCA сенсибилизировать линии клеток NSCLC дикого типа EGFR при сочетании с гефитинибом или эрлотинибом in vitro. DCA значительно усилил ингибирующий эффект гефитиниба и эрлотиниба на жизнеспособность клеток A549 и LNM35. Это исследование также показало аддитивные эффекты на рост колоний LNM35 при сочетании DCA с гефитинибом или эрлотинибом в течение семи дней лечения. Более того, эта комбинация оказала синергическое действие на рост колоний A549 после четырнадцати дней лечения. Кроме того, все эти протоколы комбинирования привели к существенному снижению клеточной плотности отдельных колоний как A549, так и LNM35. В этом контексте сообщалось, что DCA с гефитинибом или эрлотинибом синергически подавляет жизнеспособность и способность к образованию колоний мутантных клеток EGFR (NCI-H1975 и NCI-H1650) из-за синергического эффекта в продвижении апоптоза. В клетках дикого типа EGFR (A549 и NCI- H460) они показали, по сравнению с индивидуальными обработками, что комбинация вызывала повышенное значение фракции, затронутой (Fa), в жизнеспособности клеток, не достигая уровня синергизма в клетках дикого типа EGFR (A549 и NCI-H460), и эта комбинация не подавляла значительно образование колоний этих линий клеток [47]. Различия в экспериментальных условиях между вышеупомянутым отчетом и нашим исследованием могут объяснить такие переменные результаты. В своем клоногенном анализе исследователи обрабатывали отдельные клетки в течение трех последовательных дней, а затем инкубировали в среде без лекарственных средств в течение 15 дней для формирования колоний; Однако в наших экспериментах клетки сначала инкубировали в течение десяти дней для формирования колоний, а затем подвергали обработке в течение семи и четырнадцати дней.

 

Подводя итог, можно сказать, что это исследование продемонстрировало, что DCA является перспективным противораковым средством для лечения НМРЛ, подавляя жизнеспособность клеток и рост колоний клеток НМРЛ in vitro , а также рост опухолей у эмбрионов цыплят CAM и голых мышей, в которых также оценивалась безопасность этого средства. DCA подавляет способность эндотелиальных клеток образовывать капилляроподобные структуры и прорастать in vitro, что позволяет предположить ингибирование ангиогенеза как потенциальный механизм противоракового эффекта. Это исследование также выявило потенциальную ценность DCA в сочетании с гефитинибом или эрлотинибом in vitro.

Результаты этого исследования прокладывают путь для подтверждения влияния комбинации DCA с гефитинибом или эрлотинибом на рост опухоли in vivo, в дополнение к исследованию влияния DCA в сочетании с EGFR-TKi второго и третьего поколения.


  1. Материалы и методы 4.1.Клеточная культура и реагенты


Клетки NSCLC, A549 и LNM35, поддерживались в среде RPMI-1640 (Gibco, Paisley, UK) в увлажненном инкубаторе при температуре 37  C и 5% CO2. Среда была дополнена 1% раствора пенициллина- стрептомицина (Hyclone, Cramlington, UK) и 10% фетальной бычьей сыворотки (Hyclone, Cramlington, UK). Эндотелиальные клетки пупочной вены человека (HUVEC) поддерживались в полном наборе сред EndoGROTM-VEGF (Merck Millipore, Massachusetts, USA) в увлажненном инкубаторе при температуре 37 C и 5% CO2 в колбах , покрытых 0,2% желатином. Культуральную среду всех клеток меняли каждые 3 дня, а клетки пересевали один раз в неделю, когда культура достигала 95% конфлюэнтности для раковых клеток и 80% для HUVEC.

 

Натрий DCA, цисплатин, камптотецин, гемцитабин HCl, эрлотиниб HCl и гефитиниб были приобретены у Sigma-Aldrich (Сент-Луис, Миссури, США). DCA был свежерастворен в воде HyPure (Hyclone, Крамлингтон, Великобритания) перед началом любого эксперимента для приготовления исходного раствора 1 М, который затем был разбавлен до требуемых концентраций для лечения.

 

4.2. Жизнеспособность

клеток Клетки A549 и LNM35 высевали с плотностью 5000 клеток/лунку в 96-луночный планшет.

Через 24 часа клетки обрабатывали возрастающей концентрацией DCA (3,125–100 мМ) в двух повторностях в течение 24, 48 и 72 часов, тогда как контрольные клетки обрабатывали лекарственным средством ( вода Hypure), смешанным со средой. В указанные временные точки использовали анализ жизнеспособности люминесцентных клеток CellTiter-Glo® (Promega Corporation, Мэдисон, Висконсин, США) для определения

влияния DCA на жизнеспособность клеток путем количественной оценки АТФ, которая будет пропорциональна


 

 

 

к числу метаболически активных клеток. Люминесцентный сигнал измеряли с помощью люминометра GloMax® (Promega Corporation, Мэдисон, Висконсин, США). Жизнеспособность клеток представляли в процентах (%) путем сравнения жизнеспособности клеток, обработанных DCA, с контрольными клетками, жизнеспособность которых предполагалась равной 100%.

Во втором наборе экспериментов клетки обрабатывали в течение 48 ч возрастающей концентрацией гефитиниба и эрлотиниба (5–80 мкМ). Кроме того, клетки обрабатывали в течение 48 ч комбинацией DCA и других противораковых агентов, а именно цисплатина, камптотецина,

гемцитабина , гефитиниба и эрлотиниба. Жизнеспособность клеток определяли с помощью CellTiter-Glo® Анализ люминесцентной жизнеспособности клеток и люминометр GloMax® (Promega Corporation, Мэдисон, Висконсин, США). Жизнеспособность была представлена в процентах (%) путем сравнения жизнеспособности обработанных лекарством клеток с контрольными клетками.

 

4.3. Клоногенный анализ

В 6-луночный планшет высевали клетки A549 и LNM35, соответственно, по 50 и 100 клеток на лунку. Клетки выдерживали для роста в колонии в течение 7–10 дней во влажной атмосфере при 37  C и 5% CO2, при этом среду меняли каждые три дня. Образованные колонии обрабатывали каждые 3 дня в течение 7 дней возрастающими концентрациями DCA (6,25–50 мМ). После этого колонии промывали три раза 1× PBS, фиксировали и окрашивали в течение 2 часов 0,5% кристаллическим фиолетовым, растворенным в 50% метаноле (об./об.). Наконец, колонии промывали 1× PBS и фотографировали, и подсчитывали колонии с более чем 50 клетками . Данные представлены в виде процента колоний (%) путем сравнения колоний, обработанных DCA, с контрольными колониями. Плотность клеток колоний оценивали путем фотографирования колоний в каждой группе с использованием инвертированного фазово-контрастного микроскопа (4×).

Во втором наборе экспериментов сформированные колонии обрабатывались каждые 3 дня в течение 7 или 14 дней комбинацией DCA и гефитиниба или DCA и эрлотиниба. Данные представлены в виде процента колоний (%) путем сравнения колоний, обработанных препаратом, с контрольными колониями.

 

 

4.4 Анализ роста опухоли in ovo

Оплодотворенные яйца леггорнов инкубировали в инкубаторе для яиц, установленном на температуру 37,5  C и влажность 50% в течение первых 3 дней после оплодотворения. На 3-й день эмбрионального развития (E3) САМ был удален путем просверливания небольшого отверстия в яичной скорлупе напротив круглого, широкого конца с последующей аспирацией ~1,5–2 мл альбумина с помощью шприца объемом 5 мл с иглой 18G. Затем в яичной скорлупе над САМ было вырезано небольшое окно с помощью тонких ножниц, которое было заклеено полупроницаемой клейкой пленкой (Suprasorb® F). Яйца снова содержались в инкубаторе до 9-го дня эмбрионального развития (E9), на котором раковые клетки были трипсинизированы, центрифугированы и суспендированы в 80% матрице Matrigel® (Corning, Bedford, UK) для получения 1 × 106 клеток/100 мкл для A549 и 0,3 ×

106 клеток/100 мкл для LNM35. 100 мкл инокулята добавляли на САМ каждого яйца, в общей сложности 10–13 я

На 11-й день эмбрионального развития (E11) образовавшиеся опухоли обрабатывали местно, капая 100 мкл DCA, приготовленного на 0,9% NaCl для первой группы, или лекарственного носителя для контрольной группы. Обработку повторяли на E13 и E15. Все описанные шаги выполняли в асептических условиях.

Наконец, на 17-й день эмбрионального развития (E17) эмбрионы гуманно умерщвляли путем местного добавления 10–30 мкл пентобарбитона натрия (300 мг/мл, Jurox, Окленд, Новая Зеландия). Опухоли осторожно извлекали из нормальных верхних тканей CAM, промывали 1× PBS и взвешивали для определения влияния DCA на рост опухолей. Данные представлены в виде сравнений среднего веса опухолей в контрольной группе и группе, обработанной DCA. Токсичность препарата оценивали путем сравнения процента живых эмбрионов в контрольной и обработанной DCA группах в конце эксперимента.

 

Живость эмбрионов определялась путем проверки их произвольных движений, а также целостности и пульсации кровеносных сосудов.

Этот анализ представляет собой рандомизированный открытый анализ, который был проведен в соответствии с протоколом, одобренным комитетом по этике животных в Университете Объединенных Арабских Эмиратов . Согласно Европейской директиве 2010/63/EU о защите животных, используемых


 

 

 

Для проведения научных экспериментов с использованием куриных эмбрионов на E18 и ранее не требуется одобрения со стороны Комитета по уходу и использованию животных (IACUC).

 

4.5 Анализ роста опухоли и метастазирования

Эксперименты на животных проводились в соответствии с протоколом, утвержденным

комитетом по этике работы с животными Университета ОАЭ в марте 2019 года (код протокола ERA_2019_5872).

Шести-восьминедельных бестимусных мышей-самцов линии NMRI nude (nu/nu, Charles River,

Германия) содержали в ламинарных шкафах с фильтруемым воздухом и соблюдали асептические условия.

Клетки A549 (5 × 106 клеток/200 мкл PBS) и клетки LNM35 (0,4 × 106 клеток/200 мкл PBS) вводили

подкожно в боковой бок голых мышей. Спустя десять дней, когда опухоли достигли объема приблизительно 50 мм3, животные с ксенотрансплантатами A,549 были случайным образом

разделены на три группы по 9–10 мышей в каждой. Эти группы получали перорально каждый день (5 дней в неделю) DCA 50 мг/кг или 200 мг/кг или лекарственный носитель в течение 38 дней. С другой стороны, животные с ксенотрансплантатами LNM35 получали перорально каждый день (5 дней в неделю) DCA 200 мг/кг или лекарственный носитель в течение 10 дней и DCA 500 мг/кг или лекарственный носитель в течение 24 дней. Размеры опухолей и вес животных проверяли каждые три или четыре дня. Кроме того, физические признаки и поведение проверялись каждый день. Объем опухоли рассчитывался по формуле V = L × W2 ×

0,5, где L представляет собой длину , а W — ширину опухоли. В конце экспериментов животных анестезировали и умерщвляли путем смещения шейных позвонков, а опухоли удаляли и взвешивали. Влияние DCA на рост опухоли было представлено путем сравнения среднего веса опухоли в конце эксперимента между контрольной группой и группой, получавшей DCA. Его также оценивали путем сравнения объема опухоли между контрольной и группой, получавшей DCA, на протяжении всего эксперимента. Образцы крови собирали у каждой мыши и анализировали с помощью счетчика крови животных SCIL VET ABC™ Animal Blood Counter для полного анализа крови. Кроме того, плазму крови отделяли центрифугированием для биохимического анализа. Для изучения влияния DCA на метастазирование подмышечные

лимфатические узлы были вырезаны и взвешены у животных с ксенотрансплантатами LNM35 в конце

 


  • Анализ формирования


сосудистых трубок Матрикс Matrigel® (Corning, Bedford, UK) размораживали и добавляли 40– 50 мкл в лунки 96-луночного планшета для покрытия. Для того чтобы Матригель затвердел, планшет держали в увлажненном инкубаторе при 37                                                                                    C и 5% CO2 в течение 1 ч. HUVEC

трипсинизировали и высевали на покрытый планшет с плотностью 2,5 × 104 клеток/100 мкл/ лунку в присутствии и в отсутствие различных концентраций DCA. Через 8 ч инкубации сети

трубок в разных лунках фотографировали с помощью инвертированного фазово-контрастного микроскопа. Влияние DCA на способность HUVEC формировать капилляроподобные структуры оценивали путем измерения общей длины сформированных трубок в контрольных и обработанных DCA лунках. Общая длина трубок измерялась вручную и с помощью программного обеспечения для онлайн-анализа изображений, разработанного Wimasis (https://www.wimasis.com/ en/products/13/WimTube - дата доступа 1 марта 2019 г.). Влияние различных концентраций DCA

на жизнеспособность HUVEC определялось с помощью анализа жизнеспособности люминесцентных клеток CellTiter-Glo® (Promega Corporation, Мэдисон, Висконсин, США), как ранее описано в разделе о жизн

 


  • Анализ прорастания сфероидов HUVEC


Сфероиды HUVEC были приготовлены путем первого окрашивания клеток путем инкубации 190 000 клеток с 2 мкМ раствором красителя CellTrackerTM Green CMFDA (Invitrogen Molecular probes, Paisley, UK) в течение 30 мин в увлажненном инкубаторе, установленном на 37  C и 5% CO2, с последующим центрифугированием в течение 5 мин и удалением супернатанта. Осадок HUVEC был суспендирован в дополненной среде HUVEC (5 мл), смешанной с раствором метоцела (1,25 мл), который должен быть приготовлен ранее [48]. Затем 25 мкл клеточной суспензии пипеткой наносили на крышку чашки Петри. Примерно 50 капель пипеткой наносили в каждую чашку Петри.

Наконец, капли держали перевернутыми в течение 24 ч в увлажненном инкубаторе, установленном на 37


Образованные сфероиды в каждой чашке (~50 сфероидов) собирали отдельно с 1× PBS и центрифугировали при 150× g в течение 5 мин. Тем временем рабочий раствор коллагена I готовили на льду путем осторожного смешивания исходного коллагена I из хвоста крысы (1500 мкл) (Millipore, MA, США) с 10× средой 199 (150 мкл) (Sigma-Aldrich, Saint Louis, MO, США) и ледяным стерильным 1N NaOH (34 мкл), который приобрел красный цвет. Каждый сфероидный осадок покрывали слоем раствора метоцела, содержащего 4% FBS (0,25 мл), рабочего раствора коллагена I (0,25 мл) и 60 мкл базальной среды или VEGF 30 нг/мл или DCA 25 мМ или их комбинации.

Сразу после осторожного перемешивания смесь добавляли в предварительно нагретый 24-луночный планшет и инкубировали в увлажненном инкубаторе при температуре 37  C и 5% CO2 в течение 24 часов, что позволяло полимеризовать коллаген и прорасти сфероидам. Через 24 часа сфероиды были захвачены с помощью инвертированного микроскопа с 20-кратным увеличением. Длина проростков в 12 сфероидах в каждом состоянии была измерена с помощью ImageJ.

 


  • Анализ подвижности при


заживлении ран Клетки A549 и LNM35 высевали с плотностью 1 × 106 клеток/лунку в 6-луночный планшет. Через 24 часа с помощью наконечника объемом 200 мкл делали царапину в сливающемся монослое . После этого клетки дважды промывали 1× PBS с последующим добавлением свежей среды с добавлением лекарственного носителя или DCA. В верхней части планшета были отмечены два места для мониторинга уменьшения размера раны с течением времени с использованием инвертированного микроскопа при объективе 4× (Olympus 1X71, Токио, Япония). Планшеты инкубировали во влажной атмосфере при 37  C и 5% CO2 , а ширину раны измеряли через 0, 2, 6 и 24 часа после инкубации.

Расстояние миграции выражалось как среднее значение разницы между измерениями в нулевой момент времени и в периоды времени 2, 6 и 24 часа.

 

 


  • Анализ камер инвазии в матригеле


Согласно протоколу производителя (Corning, Bedford, MA, USA), в нижние камеры добавляли 0,5 мл среды RPMI-1640 с добавлением 10% FBS. После этого раковые клетки высевали с плотностью 1 × 105 клеток/ 0,5 мл в верхние камеры в среде без FBS в присутствии и отсутствии DCA. Планшет держали в увлажненном инкубаторе при 37  C и 5% CO2 в течение 24 часов. Инвазивные клетки разрушают матригель и проходят через поры вставки размером 8 мкм. Непроникающие клетки верхних камер удаляли, осторожно протирая область ватным тампоном. Затем полупроницаемую мембрану удаляли с помощью очень тонких ножниц.

Инвазивные клетки были обнаружены с помощью анализа жизнеспособности клеток CellTiter-Glo® Luminescent Cell Viability (Promega Corporation, Мэдисон, Висконсин, США), ранее описанного в разделе жизнеспособности клеток. Влияние DCA на клеточную инвазию было представлено в процентах (%) путем сравнения инвазирующих клеток в присутствии DCA с контролем.

 

 

 

 


  • Статистический анализ


Помимо анализа in ovo и экспериментов на голых мышах, каждый эксперимент проводился не менее трех раз. Данные выражены как среднее значение ± SEM Статистический анализ проводился с использованием GraphPad Prism версии 8.3.1 для Windows (GraphPad Software, Сан-Диего, Калифорния,

США). Для оценки разницы между двумя группами использовался непарный t-тест . Для сравнения 3 или более групп с контрольной группой использовался однофакторный дисперсионный анализ с последующим тестом множественного сравнения Даннетта . Кроме того, для комбинированных экспериментов

использовался однофакторный дисперсионный анализ с последующим тестом множественного*сравнения Тьюки. p

** p < 0,01, *** p < 0,001 и **** p < 0,0001 указывают на значимые различия.

 

Вклад авторов: Концептуализация, SA; методология, SA, AA-A., SS, KA, JY и AN; валидация, SA, AA-A., SS, KA, JY и AN; формальный анализ, SA и AA-A.; расследование, SA, AA-A., SS, KA, JY и AN; курирование данных, SA; написание — подготовка первоначального черновика, SA и AA-A.; написание — рецензирование и редактирование, SA, AA-A., SS, KA, JY и AN; визуализация, SA, AA-A. и AN; руководство, SA; администрирование проекта, SA; получение финансирования, SA Все авторы прочитали и согласились с опубликованной версией рукописи.


 

 

 

 

Финансирование: Это исследование частично финансировалось за счет гранта Центра медицинских наук имени Зайеда, Университета Объединенных Арабских Эмиратов, № 31R136.

Заявление институционального наблюдательного совета: Исследование на голых мышах проводилось в соответствии с руководящими принципами Хельсинкской декларации и протоколом, одобренным Комитетом по этике обращения с животными Университета Объединенных Арабских Эмиратов (код протокола ERA_2019_5872).

Заявление об информированном согласии: Неприменимо.

 

Заявление о доступности данных: Неприменимо.

 

Благодарности: Авторы выражают благодарность Такаши Такахаши за предоставление клеток LNM35.

 

Конфликты интересов: Авторы заявляют об отсутствии конфликта интересов. Спонсоры не принимали участия в разработке исследования, в сборе, анализе или интерпретации данных, в написании рукописи или в решении опубликовать результаты.

Определение цитотоксического эффекта амигдалина в клеточной линии DLD-1 и антицитотоксического эффекта в клеточной линии CCD-18CO

Определение цитотоксического эффекта амигдалина в клеточной линии DLD-1 и антицитотоксического эффекта в клеточной линии CCD-18CO

 Год 2022 , Том: 44 Выпуск: 4, 377 - 383, 31.12.2022

https://doi.org/10.7197/cmj.1185366


Абстрактный

Цель: Амигдалин, который является частью ароматической цианогенной гликозидной группы, содержится в семенах растений, таких как абрикос, персик, слива, яблоко, груша и вишня. Было показано, что амигдалин обладает противоопухолевыми свойствами против многих видов рака, таких как рак толстой кишки, молочной железы и легких. Целью данного исследования было определение цитотоксического и антицитотоксического действия амигдалина на клетки рака толстой кишки человека (DLD-1) и нормальный эпителий толстой кишки (CCD-18Co) с использованием теста MTT (3-(4,5-диметилтиазол-2-YL)-2,5-дифенилтетразолий бромид).
Материалы и методы: Клетки DLD-1 и CCD-18Co выращивали в колбах, содержащих Roswell Park Memorial Institute-1640 и минимальную необходимую среду Игла соответственно. Обе группы клеток обрабатывали концентрациями амигдалина 100, 50, 25, 12,5, 6,25, 3,125 и 1,56 мМ в течение 24 часов. Затем в лунки аспирированных планшетов добавляли 20% красителя МТТ и инкубировали в течение 3 часов. После остановки реакции чистым диметилсульфоксидом (ДМСО) в конце периода значения поглощения планшетов считывали спектрофотометрически при длине волны 570 нм.
Результаты: значения процента жизнеспособности для линии клеток DLD-1 были обнаружены в диапазоне 48,3–71,6%, а значение IC50 было рассчитано как 74,03 мМ. Значения жизнеспособности для линии клеток CCD-18Co после обработки амигдалином варьировались от 101,6 до 117,9%.
Заключение: В то время как амигдалин показал цитотоксический эффект в клеточной линии DLD-1, он показал антицитотоксический эффект в клеточной линии CCD-18Co. В нашем исследовании было установлено, что амигдалин снизил жизнеспособность раковых клеток DLD-1 дозозависимым образом и не показал цитотоксического эффекта на нормальные эпителиальные клетки CCD18-Co. Необходимы более комплексные контролируемые клинические испытания, чтобы продемонстрировать возможность использования амигдалина в сочетании с другими противоопухолевыми препаратами и разработать искусственный синтез активных ингредиентов в амигдалине с целью повышения противоопухолевой активности этих препаратов.

Ключевые слова

Амигдалин, Лечение рака, Культура клеток, Рак толстой кишки, Витамин В17, Амигдалин, Лечение рака, Клеточная культура, Рак толстой кишки, Витамин B17

Ссылки


  • 1. Herbst MC. Ассоциация по борьбе с раком Южной Африки (CANSA). Информационный бюллетень о десяти основных видах рака в каждой группе населения. 2015 г. https://www.compcom.co.za/wp-content/uploads/2020/03/Fact-Sheet-on-Cancer-of-an-Unknown-Primary-CUP.pdf.
  • 2. Африн С., Джампьери Ф., Гаспаррини М., Форбс-Эрнандес Т.Й., Варела-Лопес А. и др. Химиопрофилактические и терапевтические эффекты съедобных ягод: фокус на профилактике и лечении рака толстой кишки. Molecules. 2016; 21(169):1 – 41.
  • 3. Хаксли Р.Р., Ансари-Могаддам А., Клифтон П., Чернихов С., Парр К.Л. и др. Влияние факторов риска, связанных с питанием и образом жизни, на риск колоректального рака: количественный обзор эпидемиологических данных. Int J Cancer. 2009;125(1):171 – 80.
  • 4. Котеча Р., Таками А., Эспиноза Дж. Л. Фитохимические вещества в рационе и химиопрофилактика рака: обзор клинических данных. Oncotarget 2016; 7(32):52517–29. Doi: 10.18632/oncotarget.9593.
  • 5. Ван Дж., Цзян Й. Ф. Природные соединения как противораковые агенты: экспериментальные данные. World J Exp Med 2012; 2(3):45–57.
  • 6. Аббуд ММ, Аль Авайда В, Альхатиб ХХ, Абу-Айяд А.Н. Противоопухолевое действие амигдалина на клетки рака молочной железы человека путем селективной сенсибилизации к окислительному стрессу. Nutr Cancer. 2019;71(3):483-490. doi: 10.1080/01635581.2018.1508731.
  • 7. Сириша Д., Редди Б.С., Реджинальд БА, Самата М., Камал Ф. Влияние амигдалина на линию клеток рака полости рта: исследование in vitro. J Oral Maxillofac Pathol. 2019; 23(1): 104–107.
  • 8. Santos Pimenta LP, Schilthuizen M, Verpoorte R, Choi YH. Количественный анализ амигдалина и пруназина в Prunus serotina Ehrh. с использованием (1) спектроскопии ЯМР-Н. Phytochem Anal 2014; 25:122–126. https://doi.org/10.1002/pca.2476.
  • 9. Owa C, Messina ME, Halaby R, Halaby R. Триптолид индуцирует лизосомально-опосредованную запрограммированную клеточную смерть в клетках рака груди MCF-7. Int J Womens Health 2013; 5:557–569. doi.org/10.2147/IJWH.S44074.
  • 10. Ши Дж., Чэнь Цюй, Сюй М., Ся Цюй, Чжэн Т. и др. Последние обновления и будущие перспективы относительно амигдалина как потенциального противоракового средства: обзор. Cancer Medicine 2019; 8(6), 3004-3011.
  • 11. Lea MA, Koch MR. Влияние цианата, тиоцианата и амигдалина на поглощение метаболитов в нормальных и опухолевых тканях крыс. J Natl Cancer Inst. 1979;63(5):1279‐1283.
  • 12. Шаки Ф., Сабери-Хасанабади П. Фармакологическая активность и токсикологические эффекты амигдалина: обзор. Фармацевтические и биомедицинские исследования 2022; 8(1), 1-12.
  • 13. Сюй С, Сун З. Расширенные исследования противоопухолевых эффектов амигдалина. J Cancer Res Ther 2014; 1:3-7. doi.org/10.4103/0973-1482.139743.
  • 14. Keydar I, Chen L, Karby S, Weiss FR, Delarea J, et al. Создание и характеристика линии клеток происхождения человеческой карциномы молочной железы. Eur J Cancer 1979; 15, 659–670.
  • 15. Chang HK, Shin MS, Yang HY, Lee JW, Kim YS и др. Амигдалин индуцирует апоптоз посредством регуляции экспрессии Bax и Bcl-2 в клетках рака простаты человека DU145 и LNCaP. Biol Pharm Bull 2006; 8: 1597–1602.
  • 16. Пак Х.Дж., Юн Ш.Х., Хан Л.С., Чжэн Л.Т., Юнг К.Х. и др.: Амигдалин ингибирует гены, связанные с клеточным циклом в клетках рака толстой кишки человека SNU-C4. World J Gastroenterol 2005; 11: 5156–5161.
  • 17. El-Kholy WB, Abdel-Rahman SA, Abd El-Hady El-Safti FEN, Issa NM. Влияние витамина B17 на экспериментально вызванный рак толстой кишки у взрослых самцов белых крыс. Folia Morphol (Warsz) 2021; 80(1): 158–169 DOI: 10.5603/FM.a2020.0021.
  • 18. Cassiem W, Kock M. Антипролиферативное действие экстрактов абрикосовых и персиковых косточек на клетки рака толстой кишки человека in vitro. BMC Complement Altern Med. 2019; 19(1): 32. doi: 10.1186/s12906-019-2437-4.
  • 19. Димитров М., Илиев И., Бардаров К., Георгиева Д., Тодорова Т. Фитохимическая характеристика и биологическая активность экстракта абрикосовых косточек в тестах на основе дрожжевых клеток и клеточных линиях гепатоцеллюлярной и колоректальной карциномы. J Ethnopharmacol. 2021 28 октября; 279:114333. https://doi.org/10.1016/j.jep.2021.114333.
  • 20. Макаревич Дж., Рутц Дж., Юнгель Э., Каульфусс С., Цаур И. и др.: Амигдалин влияет на адгезию и инвазию клеток рака мочевого пузыря in vitro. PLoS One 2014; 9: e110244.
  • 21. Квон ХЙ, Хонг СП, Хан ДХ и Ким ДЖХ: Индукция апоптоза экстракта семени персика в клетках промиелоцитарного лейкоза человека (HL-60). Arch Pharm Res 2003; 26: 157–161.
  • 22. Qian L, Xie B, Wang Y, Qian J. Амигдалин-опосредованное ингибирование инвазии клеток немелкоклеточного рака легких in vitro. Int J Clin Exp Pathol 2015; 8:5363–5370
  • 23. Кадир М., Фатима К. Обзор фармакологической активности амигдалина. Arch Cancer Res 2017; 5: 10–12.
  • 24. Jucaa M, Bandeira B, Carvalho D, Leal AT. Сравнительное исследование 1,2-диметилгидразина и азоксиметана по индукции колоректального рака у крыс. J Coloproctol. 2014; 34(3): 167–173. doi: 10.1016/j.jcol.2014.06.003.
  • 25. Chari KY, Polu PR, Shenoy RR. Оценка экстракта семян тыквы при раке толстой кишки, вызванном 1,2-диметилгидразином у крыс Wistar. J Toxicol. 2018; 6086490, doi: 10.1155/2018/6086490.
  • 26. Chen Y, Ma J, Wang F, Hu J, Cui A и др. Амигдалин индуцирует апоптоз в клетках линии HeLa рака шейки матки человека. Immunopharmacol Immunotoxicol 2013; 35(1): 43–51. doi: 10.3109/08923973.2012.738688.
  • 27. Newmark J, Brady RO, Grimley PM, Gal AE, Waller SG и др. Амигдалин (Laetrile) и пруназин бетаглюкозидазы: распределение в безмикробных крысах и в опухолевой ткани человека. Proc Natl Acad Sci USA 1981; 78: 6513-6516.

Показать меньше ссылок


Дихлорацетат (ДХА) и рак: обзор клинического применения

Дихлорацетат (ДХА) и рак: обзор клинического применения


Лаборатория доклинических и трансляционных исследований, IRCCS-CROB, Реферальный онкологический центр Базиликаты, Рионеро-ин-Вультуре (Pz), 85028, Италия
2 Кафедра клинической и экспериментальной медицины, Университет Фоджи, Фоджа 71121, Италия

Корреспонденцию следует направлять Тициане Татарани; tiziana.tataranni@crob.it


Приглашенный редактор: Канхайя Сингх

Авторские права © 2019 Тициана Татаранни и Клаудия Пикколи. Это статья открытого доступа, распространяемая по лицензии Creative Commons Attribution, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.

Получено:  24 июля 2019 г.
Изменено:  12 сентября 2019 г.
Принято:  11 октября 2019 г.
Опубликовано онлайн:  14 ноября 2019 г.


Обширный объем литературы описывает противораковые свойства дихлорацетата (DCA), но его эффективное клиническое применение в терапии рака по-прежнему ограничивается клиническими испытаниями. Возникновение побочных эффектов, таких как нейротоксичность, а также подозрение на канцерогенность DCA по-прежнему ограничивают клиническое применение DCA. Однако в последние годы число отчетов, поддерживающих использование DCA против рака, возросло также из-за большого интереса к нацеливанию на метаболизм опухолевых клеток. Анализ механизма действия DCA помог понять основы его селективной эффективности против раковых клеток. Успешное совместное введение DCA с традиционной химиотерапией, радиотерапией, другими препаратами или природными соединениями было протестировано на нескольких моделях рака. Новые системы доставки лекарств и многофункциональные соединения, содержащие DCA и другие препараты, по-видимому, улучшают биодоступность и кажутся более эффективными благодаря синергетическому действию нескольких агентов. Распространение отчетов, поддерживающих эффективность DCA в терапии рака, побудило провести дополнительные исследования, которые позволили найти другие потенциальные молекулярные мишени DCA. Интересно, что DCA может существенно влиять на фракцию стволовых клеток рака и способствовать искоренению рака. В совокупности эти результаты дают весомое обоснование для новых клинических трансляционных исследований DCA в терапии рака.

ВВЕДЕНИЕ

Рак является одной из основных причин смерти во всем мире. Несмотря на значительный прогресс в диагностических и терапевтических подходах, его искоренение по-прежнему представляет собой проблему. Слишком много факторов ответственны за неудачу терапии или рецидив, поэтому существует острая необходимость в поиске новых подходов к его лечению. Помимо типичных известных свойств, характерных для злокачественных клеток, включая аномальную пролиферацию, дерегуляцию апоптоза и клеточного цикла [1, 2] , раковые клетки также демонстрируют особую метаболическую машину, которая предлагает еще один многообещающий подход к терапии рака [3–5] . Наша группа уже предположила важность метаболической характеристики раковых клеток для прогнозирования эффективности метаболического лечения [6] . Лекарства, способные влиять на метаболизм рака, уже рассматриваются, показывая обнадеживающие результаты с точки зрения эффективности и переносимости [7] . В последнее десятилетие малая молекула DCA, уже используемая для лечения острого и хронического лактоацидоза, врожденных ошибок митохондриального метаболизма и диабета [8] , в основном предназначалась в качестве противоракового препарата. DCA представляет собой водорастворимую молекулу кислоты массой 150 Да, аналог уксусной кислоты, в которой два из трех атомов водорода метильной группы заменены атомами хлора (рисунок 1(a)) [9] . Введение DCA в дозах от 50 до 200 мг/кг/умер связано с уменьшением объема опухолевой массы, скорости пролиферации и распространения метастазов в нескольких доклинических моделях [10] . Наша группа уже наблюдала обратную корреляцию между способностью DCA убивать раковые клетки и их митохондриальной дыхательной способностью в карциномах ротовых клеток [11] . Более того, недавно мы описали способность DCA влиять на митохондриальную функцию и замедлять прогрессирование рака в модели рака поджелудочной железы [12] . На сегодняшний день доступны последовательные данные клинических испытаний и отчеты о случаях, описывающие введение DCA у онкологических больных [13–16] , но, несмотря на растущий объем литературы, подтверждающей эффективность DCA против рака, он пока не используется в клинической практике. Целью этого обзора является обобщение последних отчетов, предполагающих использование DCA в терапии рака в сочетании с химиотерапевтическими агентами, радиотерапией и другими химическими или природными соединениями, демонстрирующими противораковые свойства. Кроме того, мы описали данные о новых целевых фармакологических формулах DCA, способных избегать побочных эффектов и улучшать биодоступность и эффективность препарата, что еще больше поощряет его возможное клиническое применение. Наконец, мы рассмотрели последние результаты, предполагающие другие потенциальные механизмы действия DCA, включая новые данные о его способности влиять на фракцию стволовых клеток рака.

Рисунок 1: (a) Химическая структура DCA. (b) Механизм действия DCA: PDK: пируватдегидрогеназная киназа; PDH: пируватдегидрогеназа. Черные пунктирные линии — биохимические процессы, ингибируемые DCA; Красные стрелки — метаболические пути, активируемые DCA.

DCA и рак: механизм действия

Потенциальная эффективность DCA в терапии рака обусловлена ​​метаболическими свойствами раковых клеток, которые обычно характеризуются повышенной гликолитической активностью и сниженным митохондриальным окислением независимо от доступности кислорода, хорошо известный эффект Варбурга [17] . Чрезмерный гликолиз и возникающее в результате перепроизводство лактата вызывают состояние метаболического ацидоза в микроокружении опухоли [ 18] . Лактат, образующийся в результате гликолиза, поглощается окружающими клетками для поддержки роста опухоли и ингибирует механизмы апоптотической гибели клеток [19, 20] . Несколько ферментов, участвующих в гликолизе, регулируют апоптоз, и их сверхэкспрессия в раковых клетках способствует подавлению апоптоза [21] . В этой ситуации соли DCA избирательно воздействуют на раковые клетки, переключая их метаболизм с гликолиза на окислительное фосфорилирование путем ингибирования киназы пируватдегидрогеназы (PDK), ингибитора пируватдегидрогеназы (PDH) [10] . Активация PDH способствует митохондриальному окислению пирувата и нарушает метаболическое преимущество раковых клеток. Мутации митохондриальной ДНК, часто возникающие при опухолеобразовании и приводящие к дисфункции дыхательной цепи [22, 23] , делают злокачественные клетки неспособными поддерживать клеточную потребность в энергии. Кроме того, снижая выработку лактата, DCA противодействует ацидозному состоянию микроокружения опухоли, способствуя ингибированию роста опухоли и ее распространению [24] . Доставка пирувата в митохондрии вызывает ремоделирование органелл, что приводит к увеличению оттока цитохрома c и других факторов, индуцирующих апоптоз, и повышению уровня ROS с последующим снижением жизнеспособности раковых клеток [9] (рисунок 1(b)).

Побочные эффекты и ограничения при использовании DCA

Клиническое применение DCA доступно как в пероральных, так и в парентеральных формулах, а дозы варьируются от 10 до 50 мг/кг/смерть [25] . Никакие доказательства тяжелой гематологической, печеночной, почечной или сердечной токсичности не подтверждают безопасность DCA [26] . Распространенные желудочно-кишечные побочные эффекты часто возникают у определенного процента пациентов, получавших лечение DCA [15] . Наиболее известным ограничением для введения DCA, наблюдавшимся как в доклинических, так и в клинических исследованиях, является периферическая невропатия [27] . Избирательность повреждения нервной системы, вызванного DCA, может быть связана с отсутствием хорошо оснащенного аппарата, способного справиться с более устойчивым окислительным фосфорилированием в клетках, продуцирующих АТФ в основном посредством гликолиза [28] . Возникающая в результате перегрузка митохондрий ставит под угрозу эффективность антиоксидантных систем, неспособных противостоять чрезмерному количеству ROS. В этой ситуации современное введение антиоксидантов должно представлять собой дополнительную стратегию для минимизации невропатии, вызванной DCA [27] . Экспрессия и активность глутатионтрансферазы zeta1 (GSTZ1), первого фермента, ответственного за клиренс DCA, могут влиять на сущность повреждения. Несинонимичные функциональные однонуклеотидные полиморфизмы (SNP) в гене человека GSTZ1 приводят к появлению различных гаплотипов, которые отвечают за различную кинетику и динамику DCA. Была продемонстрирована четкая связь между гаплотипом GSTZ1 и клиренсом DCA. На этой основе персонализированная дозировка DCA, основанная не только на массе тела, может минимизировать или предотвратить побочные эффекты у пациентов, хронически принимающих этот препарат [29] . Возникновение нейропатии связано с хроническим пероральным приемом DCA и является обратимым эффектом, ограниченным временем лечения [30] . Внутривенный путь снижает, OH Cl Cl O (a) Раковые клетки Раковые клетки Смерть раковых клеток Лактат Опухоль Микросреда Лактат Пируват Гликолиз PDK DCA PDH Окислительное фосфорилирование Апоптоз восстановление Цитохром c Глюкоза (b) Рисунок 1: (a) Химическая структура DCA. (b) Механизм действия DCA: PDK: пируватдегидрогеназная киназа; PDH: пируватдегидрогеназа. Черные пунктирные линии, биохимические процессы, ингибируемые DCA; Красные стрелки, метаболические пути, активируемые DCA. 2 Окислительная медицина и клеточная продолжительность жизни, следовательно, потенциал нейротоксичности и позволяют достижению более высоких концентраций препарата обойти пищеварительную систему [13] .
Поскольку DCA входит в число побочных продуктов дезинфекции воды, обнаруженных в низких концентрациях в питьевой воде, его потенциальная канцерогенность находится на стадии оценки. Исследования, проведенные на мышах, связывают воздействие DCA в раннем возрасте с увеличением частоты возникновения гепатоцеллюлярных опухолей [31]. Вполне возможно, что постоянные изменения в метаболизме клеток, вызванные DCA, могут вызывать эпигенетические эффекты. Длительная индукция PDH и других окислительных путей, связанных с метаболизмом глюкозы, может способствовать увеличению активных форм кислорода и митохондриального стресса [27] . Однако в клинических исследованиях не сообщается о каких-либо доказательствах канцерогенного эффекта при введении DCA в терапии рака.

Синергетический эффект DCA и химиотерапевтических агентов

Комбинирование различных препаратов является общепринятой стратегией для получения синергического полезного эффекта в терапии рака, снижения дозировки препаратов, минимизации рисков токсичности и преодоления лекарственной устойчивости. Совместное введение DCA и традиционных химиотерапевтических агентов было предназначено и протестировано на нескольких моделях рака (таблица 1). Лечение DCA, по-видимому, повышает эффективность химиотерапии, вызывая биохимические и метаболические изменения, что приводит к значительным изменениям энергетического баланса раковых клеток. Исследование, проведенное при немелкоклеточном раке легких (НМРЛ), показало как in vitro, так и in vivo, что совместное введение DCA с паклитакселом повышает эффективность гибели клеток за счет ингибирования аутофагии [32] . Эффективная комбинация DCA и доксорубицина (DOX) была протестирована на клетках HepG2, продемонстрировав способность DCA нарушать клеточную антиоксидантную защиту, тем самым способствуя окислительному повреждению, в свою очередь, вызванному лечением DOX [33] . Существует сильная связь между сверхэкспрессией PDK и химиорезистентностью; таким образом, можно предположить, что ингибирование PDK может помочь повторно сенсибилизировать раковые клетки к препаратам. Сверхэкспрессия изоформы PDK2 была связана с резистентностью к паклитакселу при НМРЛ. Интересно, что комбинация DCA с паклитакселом была более эффективна в уничтожении резистентных клеток, чем лечение паклитакселом или DCA по отдельности [34] . Подобно НМРЛ, интересное исследование in vivo, проведенное при распространенном раке мочевого пузыря, показало повышенную экспрессию изоформы PDK4 при высокой степени злокачественности по сравнению с раком низкой степени злокачественности, а совместное лечение DCA и цисплатином значительно уменьшило объемы опухоли по сравнению с DCA или цисплатином по отдельности [35]. Недавнее исследование подтвердило способность DCA устранять химиорезистентность, связанную с PDK4, также при гепатоцеллюлярной карциноме человека (ГЦК) [36] .

Опухолевая сущность Модельная система Препарат химиотерапии, вводимый совместно с DCA Механизм действия Исход Ссылки
Рак легких Линии клеток A549-H1975/модель ксенотрансплантата Паклитаксел Торможение аутофагии Эффективная сенсибилизация к химиотерапии рака [32]
Гепатокарцинома Линия клеток HepG2 Доксорубицин Нарушение антиоксидантной защиты Увеличение повреждения клеток из-за индукции окислительного стресса [33]
Рак легких Линия клеток A549 Паклитаксел Повышенная химиочувствительность за счет ингибирования PDK2 Преодоление резистентности к паклитакселу [34]
Рак мочевого пузыря Клеточные линии HTB-9, HT-1376, HTB-5, HTB-4/модель ксенотрансплантата Цисплатин Повышенная химиочувствительность за счет ингибирования PDK4 Увеличение гибели раковых клеток и потенциальные терапевтические преимущества [35]
Гепатокарцинома Сферические культуры из клеточных линий HepaRG и BC2 Цисплатин, сорафениб Повышенная химиочувствительность за счет ингибирования PDK4 Улучшение терапевтического эффекта химиотерапии за счет восстановления активности митохондрий [36]

Таблица 1: Список отчетов, предполагающих положительный эффект совместного применения DCA и химиотерапии при нескольких типах рака.


Синергетический эффект DCA и других потенциальных противораковых препаратов

Последовательный объем литературы предполагает положительные эффекты совместного введения DCA с соединениями, которые в настоящее время используются для лечения других заболеваний, но демонстрируют противораковые свойства в нескольких моделях рака (таблица 2). Современное введение DCA и антибиотика салиномицина, недавно заново открытого за его цитотоксические свойства как потенциального противоракового препарата, было протестировано на линиях клеток колоректального рака. Их лечение, по-видимому, оказывает синергический цитотоксический эффект, ингибируя экспрессию белков, связанных с множественной лекарственной устойчивостью [37] . Раковые клетки, лишенные метаболических ферментов, участвующих в метаболизме аргинина, могут привести к чувствительности к лечению аргиназой. Интересно, что совместное введение рекомбинантной аргиназы и DCA оказывает антипролиферативный эффект при тройном негативном раке молочной железы из-за активации p53 и индукции остановки клеточного цикла [38] . Ингибиторы COX2, в основном используемые в качестве противовоспалительных препаратов, недавно были предложены в качестве противоопухолевых препаратов из-за их антипролиферативной активности. Интригующее исследование, проведенное на клетках рака шейки матки, показало неспособность DCA убивать клетки рака шейки матки, сверхэкспрессирующие COX2, и продемонстрировало, что ингибирование COX2 целекоксибом делает клетки рака шейки матки более чувствительными к DCA как в экспериментах in vitro, так и in vivo [39] . Поскольку DCA способствует окислительному фосфорилированию за счет снижения гликолитической активности, сочетание DCA с другими препаратами, усиливающими состояние зависимости от глюкозы, может быть многообещающей стратегией. Такой подход был опробован при раке головы и шеи, при котором введение пропранолола, неселективного бета-блокатора, способного влиять на митохондриальный метаболизм опухолевых клеток, вызывало гликолитическую зависимость и энергетический стресс, делая клетки более уязвимыми для лечения DCA [40] . Аналогичные результаты были получены в клетках меланомы, в которых введение ингибиторов рецептора ретиноевой кислоты β (RARβ) вызывало сенсибилизацию к DCA [41] . Положительный эффект совместного введения DCA с метформином, гипогликемическим препаратом, широко используемым для лечения диабета, был продемонстрирован в доклинической модели глиомы [42] , а также в низкометастатическом варианте карциномы легких Льюис (LLC) [43] . Цзян и его коллеги исследовали эффекты фенформина, аналога метформина, и DCA в глиобластоме, продемонстрировав, что одновременное ингибирование комплекса I и PDK фенформином и DCA, соответственно, снижало самообновление и жизнеспособность стволовых клеток глиомы (GSC), что предполагает их возможное использование для воздействия на фракцию стволовых клеток рака [44] .

Лекарство Основная функция Опухолевая сущность Модельная система Исход Ссылки
Салиномицин Антибиотик Колоректальный рак Линии клеток DLD-1 и HCT116 Ингибирование белков, связанных с множественной лекарственной устойчивостью [37]
Аргиназа Метаболизм аргинина Рак молочной железы Модель MDA-MB231 и MCF-7/ксенотрансплантат Антипролиферативный эффект за счет активации p53 и остановки клеточного цикла [38]
ингибиторы ЦОГ2 Воспаление Рак шейки матки Линии клеток HeLa и SiHa/модель ксенотрансплантата Подавление роста раковых клеток [39]
Пропранолол Бета-блокатор Рак головы и шеи Клеточные линии mEERL и MLM3/C57Bl/6 м Повышение глюкозозависимости и усиление эффекта химиолучевой терапии [40]
Ингибиторы RARβ Метаболизм витамина А Меланома Клеточные линии ED-007, ED-027, ED-117 и ED196 Развитие зависимости от глюкозы и сенсибилизация к DCA [41]
Метформин Диабет Глиома, карцинома легких Льюиса Модель ксенотрансплантата; клетки LLC/R9 Продление жизни мышей с глиомой; сильная зависимость от глюкозы в микроокружении опухоли [42, 43]
Фенформин Диабет Глиобластома Модель стволовых клеток глиомы/ксенотрансплантата Торможение самообновления раковых стволовых клеток [44]

Таблица 2: Список препаратов, основная функция которых была протестирована в сочетании с DCA на нескольких моделях рака.


Совместное использование DCA и натуральных соединений

Клиническое применение природных соединений представляет собой многообещающий новый подход к лечению ряда заболеваний [45] . Все больше литературы подтверждает обнаружение среди природных соединений биологически активных веществ, выделенных растениями, грибами, бактериями или морскими организмами, которые оказывают благотворное воздействие на здоровье человека [46–48] . Предположение о природных соединениях или их производных, по-видимому, представляет собой обнадеживающий подход к предотвращению возникновения или рецидива рака, и это обычно называется химиопрофилактикой [49] . Более того, природные вещества оказывают благотворное воздействие при терапии рака при совместном введении с другими препаратами, демонстрируя их способность преодолевать лекарственную устойчивость, увеличивать противораковый потенциал и снижать дозы лекарств и токсичность [50, 51] . Интересно, что недавно было предложено совместное введение DCA и природных соединений. В исследовании изучалось комбинированное действие DCA с куркумином, смешанным с эфирным маслом, соединением с полезными свойствами как для профилактики, так и для лечения рака [52] , демонстрирующим противораковый потенциал против HCC [53] . В частности, сочетание обоих соединений синергически снижало выживаемость клеток, способствуя апоптозу клеток и вызывая внутриклеточную генерацию ROS. Бетулин, природное соединение, выделенное из бересты, уже известно своим антипролиферативным и цитотоксическим действием против нескольких линий раковых клеток [54–56] . Исследование противоопухолевой активности производных бетулина in vitro при НМРЛ подтвердило его способность ингибировать in vivo и in vitro рост клеток рака легких, блокируя фазу G2/M клеточного цикла и вызывая активацию каспазы и фрагментацию ДНК. Интересно, что производное бетулина Bi-L-RhamBet было способно нарушать митохондриальную электрон-транспортную цепь (ETC), вызывая выработку ROS. Учитывая свойство DCA увеличивать общее окисление глюкозы в митохондриях через цикл Кребса и ETC, авторы объединили Bi-L-RhamBet с DCA, продемонстрировав его значительную потенцированную цитотоксичность [57] .

DCA и радиосенсибилизация

Радиотерапия представляет собой еще одну стратегию лечения рака и обеспечивает локальный подход путем введения высокоэнергетических лучей [58] . Основным эффектом облучения является индукция ROS с последующим повреждением ДНК, хромосомной нестабильностью и гибелью клеток путем апоптоза [59] . Однако некоторые опухоли демонстрируют или развивают радиорезистентность, которая является причиной неудачи радиотерапии и высокого риска рецидива опухоли или метастазирования [60] . Несколько факторов могут быть ответственны за радиорезистентность [61] . Среди них гипоксия, распространенное состояние микросреды опухоли, характеризующееся низким уровнем кислорода и сниженной генерацией видов ROS, может блокировать эффективность ионизирующего излучения [62] . Поэтому увеличение оксигенации опухоли таким образом, чтобы способствовать значительному количеству ROS [63] или напрямую индуцировать выработку ROS, может представлять собой стратегию повышения радиосенсибилизации [64 , 65] . В этой ситуации введение DCA, которое, как известно, индуцирует выработку ROS [11, 66] , может представлять собой стратегию преодоления радиорезистентности опухоли. Более того, известно, что метаболические изменения, характерные для развития рака, влияют на радиочувствительность [67, 68] . Следовательно, нацеливание на промежуточные продукты метаболизма рака может представлять собой стратегию улучшения селективного ответа рака на облучение [69] . Эффективность DCA для повышения радиочувствительности уже была продемонстрирована как на клетках глиобластомы [70] , так и на плоскоклеточной карциноме пищевода [71] . Совсем недавно было продемонстрировано, что DCA повышает радиочувствительность в клеточной модели медуллобластомы, смертельной опухоли мозга у детей, вызывая изменения метаболизма ROS и функции митохондрий и подавляя способность к восстановлению ДНК [72] . Поскольку роль иммунотерапии в восстановлении иммунной защиты против прогрессирования опухоли и метастазирования привлекает большое внимание в последние годы [73] , Гупта и Двараканат представили современное состояние возможных эффектов гликолитических ингибиторов, включая DCA, на радиосенсибилизацию опухоли, сосредоточив свое внимание на взаимодействии между метаболическими модификаторами и иммунной модуляцией в процессах радиосенсибилизации [74] . Интересно, что они сообщили о способности DCA способствовать иммунной стимуляции посредством ингибирования накопления лактата, что еще больше поддерживает его использование в качестве адъюванта радиотерапии.

DCA и новые лекарственные формы

Растет интерес к разработке новых лекарственных форм для улучшения доставки лекарств, повышения эффективности и снижения доз и, следовательно, нежелательных эффектов. В этой ситуации системы доставки лекарств (СДЛ) представляют собой новый рубеж в современной медицине [75] . СДЛ предлагают возможность создания гибрида металлоорганических каркасов (МОФ), сочетающего биосовместимость органической системы с высокими нагрузками неорганической фракции [76] . Несколько линий доказательств предполагают эффективную функционализацию наночастиц с помощью ДКА. Лазаро и коллеги [77] исследовали различные протоколы для функционализации ДКА наночастиц терефталата циркония (Zr) (UiO-66). Они продемонстрировали цитотоксичность и селективность тех же СДЛ против различных линий раковых клеток. Более того, они исключили возможную реакцию иммунной системы на ДКА-МОФ in vitro. Та же группа позже показала возможность загрузки Zr MOF вторым противораковым препаратом, таким как 5-фторурацил (5-FU), чтобы воспроизвести синергический эффект двух препаратов [78] . MOF на основе циркония, загруженный DCA, также был предназначен в качестве привлекательной альтернативы UiO-66, показывая селективную цитотоксичность in vitro по отношению к нескольким линиям раковых клеток и хорошую переносимость иммунной системой нескольких видов [79] . Недавно Štarha et al. [80] впервые синтезировали и охарактеризовали полусэндвич-комплексы, содержащие рутений или осмий и DCA (рисунок 2(a)). Оба комплекса Ru-dca и Os-DCA были проверены на линиях клеток карциномы яичников, продемонстрировав большую цитотоксичность, чем цисплатин в отдельности. Оба комплекса были способны индуцировать высвобождение цитохрома c (Cytc) из митохондрий, косвенный показатель активации апоптосомы, и, по-видимому, были менее токсичными по отношению к здоровым первичным гепатоцитам человека, что указывает на селективность в отношении рака по сравнению с нераковыми клетками. Многообещающие результаты были также получены в клетках рака молочной железы с тройным негативом [81] . Конъюгат рения (I)-DCA продемонстрировал эффективное проникновение в раковые клетки и селективное накопление в митохондриях, вызывая митохондриальную дисфункцию и метаболические нарушения [82] . В последние годы было разработано несколько многоактивных препаратов для современного нацеливания на различные внутриклеточные пути с использованием одной формулы. Безопасная, простая, воспроизводимая наноформула комплекса доксорубицинDCA (рисунок 2(b)) была успешно испытана на модели меланомы у мышей, показав увеличение способности к загрузке препарата, снижение побочных эффектов и усиление терапевтического эффекта [83] . Были синтезированы противоопухолевые пролекарства Pt (IV) двойного действия китеплатина с аксиальными лигандами DCA (рисунок 2(c)), охарактеризованы и протестированы на различных линиях опухолевых клеток и in vivo [84]. Для преодоления резистентности рака были предложены тройные производные Pt (IV) цисплатина в качестве новых мощных противораковых агентов, способных конъюгировать действие цисплатина, ингибиторов циклооксигеназы и DCA (рисунок 2(d)) [85] . Новый комплекс, содержащий DCA, платину и биотин (DPB), был успешно испытан, демонстрируя многогранные противоопухолевые свойства (рисунок 2(e)). Авторы продемонстрировали способность такого пролекарства влиять на энергетический метаболизм, способствовать апоптозу и взаимодействовать с ДНК. Высокая селективность биотина в отношении раковых клеток сводит к минимуму пагубное воздействие на нормальные клетки и улучшает лечебный эффект на опухоли [86] . Характеристики и экспериментальные доказательства основных классов соединений обобщены в таблице 3.

Класс лекарственной формы Функции Тесты in vitro Тесты in vivo Экспериментальные доказательства Ссылки
Металло-DCA каркасы (без платины) Ионы металлов, связанные с органическими лигандами в пористые каркасы MCF-7/MDA-MB-231 (молочная железа) HeLa/LO2 (шейка матки) A2780 (яичник) A549/NCl-H1229 (легкое) Модели грудных мышей Биосовместимость, избирательная цитотоксичность, совместимость с иммунной системой, низкая мутагенность. [77–82 ]
Конъюгат доксорубицина-DCA Комплексы ДХА и химиотерапевтических препаратов B16F10 (меланома) Мышиные модели саркомы и меланомы Безопасность селективной цитотоксичности. Эффективность противоопухолей in vivo. [83]
Платиновые пролекарства с DCA Платиновое ядро, связанное с DCA и другими препаратами MCF-7 (молочная железа) LoVo/HCT-15/HCT116 (толстая кишка) A549 (легкие) BxPC3/PSN-1 (поджелудочная железа) A375 (меланома) BCPAP (щитовидная железа) HeLa (шейка матки) HepG2 (гепатокарцинома) Мышиные модели карциномы легких Избирательная цитотоксичность, множественное действие. Увеличение клеточного поглощения. [84–86 ]

Таблица 3: Свойства основных классов лекарственных форм DCA, протестированные на линиях раковых клеток и моделях in vivo с соответствующими экспериментальными доказательствами.


Рисунок 2: Новые лекарственные формы, содержащие DCA. (a) Схематическое изображение комплексов Os-DCA и Ru-DCA [81]. (b) Комплекс доксорубицин (DOX)-DCA [83]. (c) Пролекарства Pt двойного действия китеплатина и DCA [84]. (d) Примеры производных Pt(IV) тройного действия цисплатина, содержащих DCA (красный), производные цисплатина (черный) и ингибиторы COX (зеленый) [85]. (e) Химическая структура DPB, содержащего DCA (красный), биотин (синий) и комплекс платины (Pt) (черный) [86].

Другие предлагаемые механизмы действия DCA

Метаболический сдвиг от гликолиза к окислению глюкозы из-за ингибирования PDK и последующей активации PDH является наиболее известным и общепринятым молекулярным эффектом введения DCA. Последующие биохимические изменения, включая увеличение ROS и изменение потенциала митохондриальной мембраны, могут быть ответственны за остановку пролиферации и гибель раковых клеток, тем самым объясняя полезный потенциал DCA в лечении рака [9] . Однако молекулярные промежуточные продукты, активируемые после введения DCA, до сих пор неизвестны. Вполне возможно, что такая малая молекула может напрямую или косвенно влиять на другие клеточные и молекулярные мишени (рисунок 3), демонстрируя другие механизмы действия, чтобы объяснить ее эффективность также в клеточных моделях, где она не производит ожидаемого метаболического сдвига [12] . Протеомный подход, примененный к клеткам рака легких, продемонстрировал способность DCA увеличивать концентрацию каждого промежуточного продукта TCA, при этом он не влиял на поглощение глюкозы или гликолитический процесс от глюкозы до пирувата [87] . В попытке пролить свет на механизм действия DCA, Дюбуа и коллеги использовали подход, основанный на метаболомике, на нескольких линиях клеток рака яичников, обработанных DCA, и обнаружили общее заметное истощение внутриклеточного пантотената, предшественника CoA, а также сопутствующее увеличение CoA, что предполагает способность DCA увеличивать биосинтез CoA de novo. Поскольку высокие концентрации CoA оказались токсичными для клеток, этот метаболический эффект может быть ответственен за токсичность раковых клеток, опосредованную DCA [88] . Совсем недавно работа Эль Сайеда и соавторов представила новую основанную на доказательствах гипотезу, предполагающую, что эффективность DCA против рака может быть обусловлена ​​его способностью противодействовать ацетату [89] , который, как известно, является энергетическим субстратом для глиобластомы и метастазов в мозг, способным усиливать синтез ДНК, РНК и белка, а также посттрансляционные модификации, тем самым способствуя пролиферации клеток и прогрессированию рака. Более того, высокие уровни ацетата связаны с устойчивостью к противораковым препаратам [90] . Было показано, что DCA способен обращать вспять метаболические изменения, вызванные ацетатом, восстанавливая физиологические уровни сывороточного лактата и свободных жирных кислот, а также концентрацию калия и фосфора. По мнению авторов, благодаря структурному сходству с ацетатом, DCA может ингибировать метаболические эффекты, вызванные ацетатом, ответственные за рост раковых клеток и химиорезистентность [89] . Другим возможным дополнительным эффектом DCA может быть модуляция pH. Известно, что модуляция уровня pH влияет на процессы пролиферации и апоптоза [91] , а также на чувствительность к химиотерапии [92].Обработка DCA может как увеличивать, так и уменьшать внутриклеточный pH. Вторичным эффектом перенаправления пирувата в митохондрии с помощью DCA будет снижение лактата и последующее увеличение внутриклеточного pH. С другой стороны, DCA способен уменьшать экспрессию монокарбоксилатных транспортеров и V-АТФазы с последующим снижением pH, и это особенно происходит в опухолевых клетках, экспрессирующих большее количество этих переносчиков по сравнению с нормальными аналогами [93] . Учитывая способность вызывать быстрое внутриклеточное закисление опухоли, Albatany et al. [94] предположили о возможном использовании DCA в качестве трекера при визуализации in vivo мышиной модели глиобластомы и поддержали терапевтическое использование DCA, поскольку известно, что внутриклеточное закисление вызывает активацию каспазы и фрагментацию ДНК раковых клеток [95] . Животные модели позволяют идентифицировать возможную дополнительную молекулярную мишень DCA. Эксперименты, проведенные на крысах, подчеркнули способность DCA ингибировать экспрессию почечного котранспортера Na-K-2Cl (NKCC) в почках крыс [96] . Поскольку NKCC является важным биомаркером регуляции внеклеточного и внутриклеточного ионного гомеостаза и участвует в прогрессировании клеточного цикла, он играет важную роль в пролиферации раковых клеток, апоптозе и инвазии. Белкахла и др. [97] исследовали взаимодействие между таргетингом метаболизма и экспрессией транспортеров ABC, ответственных за экспорт лекарств из клеток и последующую множественную лекарственную устойчивость, и обнаружили, что лечение DCA способно снизить экспрессию генов и белков транспортеров ABC в нескольких опухолевых клетках, экспрессирующих дикий тип p53, как in vitro, так и in vivo [98] . Уже была продемонстрирована способность DCA вызывать дифференциацию посредством модуляции взаимодействия PKM2/Oct4 в клетках глиомы [99] . Полученное снижение уровней транскрипции Oct4 было связано с уменьшением фенотипа стволовости и значительным повышением чувствительности к клеточному стрессу. Это наблюдение позволяет предположить потенциальную роль DCA против раковых стволовых клеток (CSC).

Рисунок 3: Другие предлагаемые механизмы действия DCA. Основной механизм действия DCA заключается в ингибировании пируватдегидрогеназной киназы (PDK), что приводит к активации пируватдегидрогеназы (PDH) и содействует окислительному фосфорилированию (1). DCA также увеличивает концентрацию промежуточных продуктов каждого цикла Кребса (2) [87]. DCA вызывает токсичность клеток посредством синтеза CoA de novo (3) [88]. DCA может противодействовать ацетату (4) [90]. DCA модулирует внутриклеточное закисление (5) [93, 94]. DCA ингибирует котранспортер Na-K-2Cl (6) [96]. DCA подавляет экспрессию генов и белков транспортеров ABC (7) [97]. DCA снижает экспрессию генов, связанных с самообновлением, и влияет на фракцию стволовых клеток рака (8) [99].

DCA и раковые стволовые клетки

Растет интерес к таргетированию раковых стволовых клеток (CSC), которые, по-видимому, являются основной причиной рецидива опухоли [100] . CSC обладают способностью к самообновлению с нормальными стволовыми клетками и могут давать начало дифференцирующимся клеткам, ответственным за возникновение опухоли, а также злокачественную прогрессию [101] . Низкая скорость пролиферации и специфический метаболический профиль способствуют тому, что CSC становятся устойчивыми к традиционной химиотерапии [102] . Возникла острая необходимость в разработке новых терапевтических средств, способных влиять на жизнеспособность раковых стволовых клеток [103] с целью полного уничтожения опухолевой массы. Обширный объем литературы фокусирует внимание на метаболическом фенотипе CSC, которые, по-видимому, отличаются от дифференцированных раковых клеток и могут представлять собой терапевтическую мишень [104–108] . В этой ситуации была выдвинута гипотеза о возможной чувствительности фракции CSC к DCA, которая была протестирована на различных моделях рака. Эмбриональные стволовые клетки карциномы представляют собой одну из наиболее подходящих моделей для изучения поддержания и дифференциации CSC, а также идентификации препаратов и молекул, способных модулировать эти процессы [109] . Исследования, проведенные на эмбриональных стволовых клетках (ESC), представляют собой предварительные важные доказательства, подтверждающие возможную эффективность DCA [110] . Интересно, что обработка ESC DCA способствует потере плюрипотентности и сдвигает их в сторону более активного окислительного метаболизма, что сопровождается значительным снижением экспрессии HIF1a и p53 [111] . Вега-Наредо и др. [112] описали важность митохондриального метаболизма в управлении стволовостью и дифференциацией в такой модели. Они охарактеризовали метаболический профиль фракции стволовых клеток и предположили меньшую восприимчивость фенотипа ствола к митохондриально-направленной терапии. Принуждение CSC к окислительному метаболизму путем обработки DCA позволило перейти от стволовости к дифференциации. Несколько отчетов подтверждают существование CSC в глиоме [113, 114] , и эффективность DCA для поражения CSC была широко оценена при таком типе рака, который так трудно лечить обычными методами и который характеризуется низкими показателями выживаемости. Еще в 2010 году Микелакис и коллеги предположили, как in vitro, так и in vivo, способность DCA вызывать апоптоз фракции стволовых клеток рака [26] . Модель глиомы на крысах, повторяющая несколько особенностей человеческой глиобластомы, подтвердила эффективность DCA для потенцирования апоптоза CSC глиомы, характеризующегося значительной сверхстимуляцией гликолитического пути по сравнению с нормальными стволовыми клетками [115]. Кроме того, Цзян и др. исследовали влияние DCA на небольшую популяцию стволовых клеток глиомы (GSC), выделенных из глиобластомы, продемонстрировав снижение свойств самообновления и увеличение процента гибели клеток [44] . Более того, тест in vivo на мышах с ксенотрансплантатами, полученными из GSC, обработанных DCA, показал значительное увеличение общей выживаемости. Лечение DCA также было протестировано на фракции стволовых клеток меланомы, и полученная биоэнергетическая модуляция смогла противодействовать протуморогенному действию ингибитора c-Met [116] . Совсем недавно проведенная работа на гепатоцеллюлярной карциноме человека выявила сверхэкспрессию PDK4 в сферах, происходящих из раковых клеток, с определенным фенотипом, подобным стволовому. Интересно, что лечение DCA смогло снизить жизнеспособность как раковых дифференцированных клеток, так и раковых стволовых клеток и обратить вспять химиорезистентность к традиционной терапии [36] . Наша группа недавно испытала способность DCA снижать экспрессию маркеров стволовых клеток рака CD24/CD44/EPCAM в клеточной линии рака поджелудочной железы, а также нарушать образование и жизнеспособность сфероидов [12] , что дополнительно подтверждает данные, полученные в других моделях рака. Наряду с химиорезистентностью, радиорезистентность также представляет собой ограничение эффективного лечения рака, и CSC, по-видимому, ответственны за такую ​​рефрактерность [117] . Сан и др. продемонстрировали способность DCA повышать радиочувствительность клеток медуллобластомы, влияя на стволоподобные клоны, снижая процент экспрессии CD133-позитивных клеток и уменьшая образование сфер [72] . Более того, в той же клеточной модели они показали измененный механизм репарации ДНК, вызванный DCA, способный объяснить повышенную эффективность радиотерапии.

Выводы

Нацеливание на метаболизм раковых клеток представляет собой новый фармакологический подход к лечению рака. Способность DCA переключать метаболизм с гликолиза на окислительное фосфорилирование увеличила интерес к этому препарату, уже известному своими противораковыми свойствами. Накопленные за последние годы доказательства подтверждают способность DCA преодолевать химио- и радиорезистентность при нескольких типах рака и позволяют выдвинуть гипотезу о дополнительных клеточных мишенях, способных объяснить его способность убивать раковые клетки. Необходимо разработать дальнейшие клинические исследования, которые в настоящее время ограничены пациентами с плохим прогнозом и запущенными рецидивирующими новообразованиями, уже не поддающимися другим традиционным методам лечения. Его потенциальная эффективность против раковых стволовых клеток, а также разработка новых лекарственных форм приближают нас к достижению эффективного клинического применения DCA.

Конфликты интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Данная работа была поддержана Текущими исследовательскими фондами Министерства здравоохранения Италии в IRCCS-CROB, Рионеро-ин-Вультуре, Потенца, Италия.