Тэг: амигдалин

Совместное введение амигдалина и дезоксиниваленола нарушило регуляторные белки, связанные с пролиферацией клеток свиных яичников in vitro


Совместное введение амигдалина и дезоксиниваленола нарушило регуляторные белки, связанные с пролиферацией клеток свиных яичников in vitro


Оригинал статьи: https://www.researchgate.net/publication/318430770_Co-administration_of_amygdalin_and_deoxynivalenol_disrupted_regulatory_proteins_linked_to_proliferation_of_porcine_ovarian_cells_in_vitro


Дезоксиниваленол (ДОН) представляет собой один из наиболее распространенных трихотеценовых микотоксинов, вырабатываемых видами Fusarium, вызывая экономические и медицинские последствия. С другой стороны, было показано, что амигдалин обладает как профилактическими, так и лечебными свойствами, поэтому он использовался в качестве традиционного лекарства из-за его широкого спектра медицинских преимуществ, включая лечение или профилактику рака, снятие лихорадки, подавление кашля и утоление жажды. Целью этого исследования in vitro была оценка потенциального воздействия натурального продукта амигдалина в сочетании с микотоксином дезоксиниваленолом (ДОН) на ключевые регуляторы пролиферации клеток и апоптоза в гранулезных клетках яичников свиней. Клетки гранулезы яичников инкубировали в течение 24 ч с амигдалином (1, 10, 100, 1000, 10 000 мкг.мл⁻¹) в сочетании с дезоксиниваленолом (1 мкг.мл⁻¹), в то время как контрольная группа оставалась необработанной. Наличие пролиферативных (циклин B1, PCNA) и апоптотических маркеров (каспаза-3) в клетках гранулезы яичников свиней после обработки амигдалином (1, 10, 100, 1000, 10 000 мкг.мл⁻¹) в сочетании с дезоксиниваленолом (1 мкг.мл⁻¹) было обнаружено с помощью иммуноцитохимии. Присутствие пролиферативных (циклин B1, PCNA) и апоптотических маркеров (каспаза-3) в гранулезных клетках яичников свиней было обнаружено с помощью иммуноцитохимии. Совместное введение амигдалина и ДОН значительно (p < 0,05) увеличило количество гранулезных клеток, содержащих циклин B1 и PCNA во всех протестированных концентрациях по сравнению с контролем. Однако процент гранулезных клеток, содержащих основной апоптотический маркер каспазу-3, не отличался после совместного введения амигдалина и ДОН. Подводя итог, результаты этого исследования in vitro указывают на то, что совместное воздействие амигдалина и дезоксиниваленола может стимулировать пептиды, связанные с пролиферацией, в гранулезных клетках яичников свиней и, таким образом, изменять пролиферацию клеток и нормальное развитие фолликулов.

Амигдалин блокирует рост клеток рака мочевого пузыря in vitro, уменьшая циклин А и cdk2

Амигдалин блокирует рост клеток рака мочевого пузыря in vitro, уменьшая циклин А и cdk2

Оригинал статьи:

https://neue-krebstherapie.com/wp-content/uploads/2015/03/Amygdalin_PlosOne_Wachstum_Blase.pdf


Аннотация

Амигдалин, природное соединение, использовалось многими онкологическими больными в качестве альтернативного подхода к лечению их болезни. Однако, действительно ли это вещество оказывает противоопухолевое действие, так и не было установлено. Было начато исследование in vitro для изучения влияния амигдалина (1,25-10 мг/мл) на рост панели линий клеток рака мочевого пузыря (UMUC-3, RT112 и TCCSUP). Были исследованы рост опухоли, пролиферация, клональный рост и прогрессирование клеточного цикла. Были исследованы белки, регулирующие клеточный цикл cdk1, cdk2, cdk4, циклин A, циклин B, циклин D1, p19, p27, а также сигналы, связанные с мишенью рапамицина млекопитающих (mTOR), phosphoAkt, phosphoRaptor и phosphoRictor. Амигдалин дозозависимо снижал рост и пролиферацию во всех трех линиях клеток рака мочевого пузыря, что отражалось в значительной задержке прогрессирования клеточного цикла и остановке G0/G1. Молекулярная оценка выявила снижение phosphoAkt, phosphoRictor и потерю компонентов Cdk и циклина. Поскольку наиболее выдающиеся эффекты амигдалина наблюдались на оси cdk2-циклин A, были проведены исследования по снижению siRNA, выявившие положительную корреляцию между уровнем экспрессии cdk2/циклин A и ростом опухоли. Таким образом, амигдалин может блокировать рост опухоли путем снижения модуляции cdk2 и циклина A. Для оценки практической ценности амигдалина как противоопухолевого препарата необходимо провести исследование in vivo.

Амигдалин блокирует in vitro адгезию и инвазию клеток почечно-клеточной карциномы с помощью интегрин-зависимого механизма

Амигдалин блокирует in vitro адгезию и инвазию клеток

почечно-клеточной карциномы с помощью интегрин-зависимого механизма



  • Автор: 
      • Ева Юнгель
     
      • Масуд Афшар
     
      • Ясмина Макаревич


Аннотация

Информация о природном соединении амигдалине, которое используется в качестве противоопухолевого средства, скудна, и поэтому его эффективность остается спорной. В этом исследовании, чтобы определить, оказывает ли амигдалин противоопухолевое действие на клетки почечно-клеточной карциномы (ПКР), было изучено его влияние на метастатическую активность ПКР. Клеточные линии ПКР, Caki-1, KTC-26 и A498, были подвергнуты воздействию амигдалина из абрикосовых косточек, и была исследована адгезия к эндотелию сосудов человека, иммобилизованному коллагену или фибронектину. Было также определено влияние амигдалина на хемотаксическую и инвазивную активность, а также влияние амигдалина на поверхностную и общую клеточную экспрессию α и β интегринов, которые участвуют в метастазировании. Мы отметили, что амигдалин вызвал значительное снижение хемотаксической активности, инвазии и адгезии к эндотелию, коллагену и фибронектину. Используя анализ FACScan, мы отметили, что амигдалин также индуцировал снижение, особенно в интегринах α5 и α6, во всех трех клеточных линиях. Функциональное блокирование α5 привело к значительному снижению адгезии KTC-26 и A498 к коллагену, а также к снижению хемотаксического поведения во всех трех клеточных линиях. Блокирование интегрина α6 значительно снизило хемотаксическую активность во всех трех клеточных линиях. Таким образом, мы предполагаем, что воздействие амигдалина на клетки почечно-клеточного рака ингибирует метастатическое распространение и связано с подавлением интегринов α5 и α6. Поэтому мы предполагаем, что амигдалин оказывает противоопухолевую активность in vitro, и это может быть связано с регуляцией интегрина.

Введение

Почечно-клеточная карцинома (ПКР) является наиболее распространенной опухолью почки. Примерно у трети пациентов есть метастазы на момент постановки диагноза, и до 30% пациентов развивают метастазы во время терапии. После метастазирования прогноз для пациентов неутешительный. Лучшее понимание молекулярных механизмов действия, лежащих в основе развития и прогрессирования ПКР, способствовало разработке таргетной терапии, тем самым улучшая прогноз для пациентов на поздних стадиях этого заболевания. Однако, несмотря на эти терапевтические достижения, прогноз для пациентов с ПКР остается неблагоприятным, 5-летняя выживаемость составляет от 5 до 12%. Неудовлетворенность традиционной терапией и желание уменьшить побочные эффекты привели многих пациентов к комплементарной и альтернативной медицине (КАМ). До 80% онкологических больных в Соединенных Штатах и ​​более 50% онкологических больных в Европе используют КАМ наряду с традиционной терапией или вместо нее.

Информация об эффективности природных соединений скудна, и некоторые из этих соединений, такие как цианогенный дигликозид амигдалин (D-манделонитрил-β-гентиобиозид), остаются спорными. Амигдалин получают из плодовых косточек семейства розоцветных, которое включает Prunus persica (персик), Prunus armeniaca (абрикос) и Prunus amygdalus var. amara (горький миндаль). Амигдалин, в основном в Соединенных Штатах, назначают онкологическим больным с 1920-х годов. В 1950-х годах была синтезирована и запатентована внутривенная, химически иная форма амигдалина как лаэтрил. Хотя лаэтрил отличается от амигдалина, эти термины часто используются взаимозаменяемо, что затрудняет интерпретацию данных. К 1978 году около 70 000 онкологических больных в США прошли лечение амигдалином. Однако исследования амигдалина, основанные на фактических данных, остаются ограниченными. Клиническое исследование, спонсируемое Национальным институтом рака более 30 лет назад, не выявило никаких признаков регрессии опухоли ( 1 ), тогда как ретроспективный анализ 67 пациентов с опухолями, получавших амигдалин, сообщил о двух полных и четырех частичных ответах ( 2 ). Амбивалентность также отражена в отчетах о случаях: амигдалин был неэффективен в пяти случаях и эффективен в четырех. Насколько нам известно, рандомизированные клинические испытания и последующие исследования не проводились. Сторонники считают амигдалин эффективным натуральным вариантом лечения рака, тогда как противники предупреждают о токсичности из-за метаболизма цианистого водорода.

Метастазы являются основной причиной смертности, связанной с ПКР. Трансэндотелиальная миграция и подвижное распространение являются критическими этапами в распространении и прогрессировании опухоли ( 3 ), а распространение раковых клеток в отдаленные органы представляет собой основную клиническую проблему при лечении рака. В настоящем исследовании изучалось противоопухолевое действие амигдалина на адгезию и миграционные свойства клеток ПКР. Поскольку интегрины активируют ряд внутриклеточных сигнальных путей, участвующих в пролиферации, дифференцировке и подвижности клеток, был определен паттерн экспрессии рецепторов адгезии интегрина α и β между обработанными амигдалином клетками и необработанными контрольными клетками. Интегрины важны как для здоровья, так и для болезни ( 4 ) и играют ключевую роль в канцерогенезе и прогрессировании рака ( 4 ).

Настоящее исследование основано на предыдущем исследовании, посвященном влиянию амигдалина на метастатические свойства трех линий клеток рака мочевого пузыря ( 5 ). Поскольку были обнаружены некоторые различия в действии амигдалина на метастатические свойства различных линий клеток рака мочевого пузыря, возник вопрос о том, ограничиваются ли различные эффекты амигдалина определенными опухолевыми образованиями или возникают в других. Таким образом, были выбраны три линии клеток RCC, поскольку опухоли RCC являются наиболее агрессивной урологической опухолью.

Материалы и методы

Культура клеток

Клетки карциномы почки, Caki-1, KTC-26 и A498, были приобретены у LGC Promochem GmbH (Wesel, Германия). Клетки выращивали и субкультивировали в среде RPMI-1640 (Seromed, Берлин, Германия) с добавлением 10% сыворотки плода теленка (FCS), 20 мМ буфера HEPES, 100 МЕ/мл пенициллина и 100 мкг /мл стрептомицина при 37°C в увлажненном инкубаторе с 5% CO2 . Субкультуры из пассажей 5–24 были отобраны для экспериментального использования. Эндотелиальные клетки пупочной вены человека (HUVEC) были выделены из пупочных вен человека и собраны путем ферментативной обработки диспазой (1 МЕ/мл; Gibco-Invitrogen, Карлсбад, Калифорния, США). HUVEC выращивали в среде 199 (M199; Biozol, Мюнхен, Германия), дополненной 10% FCS, 10% объединенной человеческой сыворотки, 20 мкг /мл фактора роста эндотелиальных клеток (Boehringer, Мангейм, Германия), 0,1% гепарина, 100 нг/мл гентамицина и 20 мМ буфера HEPES (pH 7,4). Субкультуры из пассажей 1–5 были отобраны для экспериментального использования. Институциональный этический комитет больницы университета Гете, Франкфурт, Германия, отказался от необходимости получения согласия, поскольку HUVEC использовались анонимно для анализов in vitro и не имели связи с данными пациентов.

Лечение амигдалиномы

Амигдалин из абрикосовых косточек (Sigma-Aldrich, Тауфкирхен, Германия) был свежерастворен в среде для культивирования клеток, а затем добавлен к опухолевым клеткам в концентрации 10 мг/мл [ранее оцененной как оптимальная концентрация ( 6 )] либо на 24 часа, либо на 2 недели (лечение применялось три раза в неделю) для оценки острого и хронического лечения. Контрольные группы оставались необработанными. Во всех экспериментах сравнивались обработанные и необработанные культуры опухолевых клеток. Для изучения токсического действия амигдалина жизнеспособность клеток определялась трипановым синим (Gibco-Invitrogen).

Адгезия опухолевых клеток

Для анализа адгезии опухолевых клеток HUVEC переносили в 6-луночные мультипланшеты (Sarstedt, Nümbrecht, Германия) в полной среде HUVEC. Когда они достигали слияния, клетки Caki-1, KTC-26 и A498 отсоединяли от культуральных колб обработкой аккутазой (PAA Laboratories, Cölbe, Германия), а затем добавляли 0,5×10 6 клеток и оставляли на монослое HUVEC на 1, 2 или 4 часа. Затем неприкрепившиеся опухолевые клетки смывали с помощью подогретого (37°C) PBS (Ca 2+ и Mg 2+ ). Оставшиеся клетки фиксировали 1% глутаральдегидом. Подсчет адгезивных опухолевых клеток производился в пяти различных полях определенного размера (5×0,25 мм2 ) с использованием фазово-контрастного микроскопа (ID03, 471202-9903; Carl Zeiss Microscopy GmbH, Геттинген, Германия), после чего рассчитывалась средняя скорость клеточной адгезии.

Присоединение к иммобилизованным белкам внеклеточного матрикса

24-луночные планшеты покрывали коллагеном G (извлеченным из телячьей кожи, состоящим из 90% коллагена типа I и 10% коллагена типа III, и разведенным до 400 мкг /мл в PBS; Biochrom, Берлин, Германия) или фибронектином (извлеченным из мышей и разведенным до 100 мкг /мл в PBS; Becton-Dickinson, Гейдельберг, Германия) на ночь. Пластиковые чашки служили фоновым контролем. Планшеты промывали 1% бычьим сывороточным альбумином (БСА) в PBS для блокирования неспецифической клеточной адгезии. Затем в каждую лунку добавляли опухолевые клетки (0,1×10 6 ) и оставляли на 30 минут для инкубации. Затем не прилипшие опухолевые клетки смывали, оставшиеся прилипшие клетки фиксировали 2% глутаральдегидом и подсчитывали микроскопически. Средний показатель клеточной адгезии, определяемый соотношением адгезивных клеток, хорошо покрытых слоем, и адгезивных клеток, фон, был рассчитан по пяти различным полям наблюдения.

Хемотаксическая активность

Сывороточно-индуцированное хемотаксическое движение исследовали с использованием 6-луночных камер Transwell (Greiner, Frickenhausen, Германия) с порами 8 мкм . Клетки (0,5×10 6 клеток Caki-1, KTC-26 или A498/мл) помещали в верхнюю камеру в бессывороточной среде, либо без амигдалина (контроль), либо содержащей амигдалин. Нижняя камера содержала 10% сыворотки. После ночной инкубации верхнюю поверхность мембраны transwell осторожно протирали ватным тампоном, чтобы удалить клетки, которые не мигрировали. Клетки, перемещающиеся на нижнюю поверхность мембраны, окрашивали гематоксилином и подсчитывали микроскопически. Средняя скорость миграции рассчитывалась из пяти различных полей наблюдения.

Вторжение

Вторжение исследовали с помощью хемотаксического движения, вызванного сывороткой, через мембрану (Greiner) с порами 8 мкм , предварительно покрытую коллагеном G (извлеченным из телячьей кожи, состоящим из 90% коллагена типа I и 10% коллагена типа III; разбавленным до 400 мкг /мл в PBS; Biochrom) и HUVEC, выращенными до слияния. Клетки Caki-1, KTC-26 или A498 (0,5×10 6 /мл) помещали в верхнюю камеру в бессывороточной среде, либо без амигдалина (контроль), либо содержащей амигдалин. Нижняя камера содержала 10% сыворотки. После инкубации в течение ночи верхнюю поверхность мембраны transwell осторожно протирали ватным тампоном, чтобы удалить клетки, которые не мигрировали. Клетки, которые переместились на нижнюю поверхность мембраны, окрашивали гематоксилином и подсчитывали микроскопически. Средний показатель миграции рассчитывался в пяти различных полях наблюдения.

Экспрессия поверхности интегрина

Опухолевые клетки промывали в блокирующем растворе (PBS, 0,5% BSA), а затем инкубировали в течение 60 мин при 4°C с конъюгированными с фикоэритрином (PE) моноклональными антителами, направленными против следующих подтипов интегринов: анти-α1 (мышиный IgG1; клон SR84; #559596), анти-α2 (мышиный IgG2a; клон 12F1-H6; #555669), анти-α3 (мышиный IgG1; клон C3II.1; #556025), анти-α4 (мышиный IgG1; клон 9F10; #555503), анти-α5 (мышиный IgG1; клон IIA1; #555617), анти-α6 (мышиный IgG2a; клон GoH3; #555736), анти-β1 (мышиный IgG1; клон MAR4; #555443), анти-β3 (мышиный IgG1; клон VI-PL2; #555754) или анти-β4 (крысиный IgG2b; клон 439-9B; #555720) (все от BD Pharmingen, Гейдельберг, Германия). Экспрессия интегрина опухолевых клеток затем измерялась с помощью FACScan (BD Biosciences, Гейдельберг; анализ гистограммы канала FL-2H (log); 1×10 4 клеток/сканирование) и выражалась как средняя относительная интенсивность флуоресценции (RFI). В качестве изотипических контролей использовали мышиный IgG1-PE (MOPC-21; #555749), IgG2a-PE (G155-178; #555574) и крысиный IgG2b-PE (R35-38; #555848; все от BD Biosciences).

вестерн-блоттинг

Для исследования содержания интегрина лизаты опухолевых клеток наносили на 7–12% полиакриламидный гель (в зависимости от размера белка) и подвергали электрофорезу в течение 90 мин при 100 В. Затем белок переносили на нитроцеллюлозные мембраны. После блокирования обезжиренным сухим молоком в течение 1 часа мембраны инкубировали в течение ночи со следующими антителами: интегрин α1 (кроличий, поликлональный, 1:1000; #AB1934; Chemicon/Millipore GmbH, Швальбах, Германия), интегрин α2 (мышиный IgG1, 1:250, клон 2; #611017; BD Biosciences), интегрин α3 (кроличий, поликлональный, 1:1000; #AB1920; Chemicon/Millipore GmbH), интегрин α4 (мышиный, 1:200, клон: C-20; #sc-6589; Santa Cruz Biotechnology, Inc., Санта-Крус, Калифорния, США)], интегрин α5 (мышиный IgG2a, 1:5000, клон 1; #610634; BD Biosciences), интегрин α6 (кролик, 1:200, клон H-87; #sc-10730; Santa Cruz Biotechnology, Inc.) и интегрин β1 (мышиный IgG1, 1:2500, клон 18; #610468), интегрин β3 (мышиный IgG1, 1:2500, клон 1; #611141) и интегрин β4 (мышиный IgG1, 1:250, клон 7; #611233) (все от BD Biosciences). Конъюгированные с HRP козьи антимышиные IgG и конъюгированные с HRP козьи антикроличьи IgG (оба 1:5000; Upstate Biotechnology, Лейк-Плэсид, штат Нью-Йорк, США) служили в качестве вторичных антител. Кроме того, сигнализация, связанная с интегрином, была исследована с помощью антител к антиинтегрин-связанной киназе (ILK) (клон 3, разведение 1:1000; № 611803), антифокальной адгезионной киназе (FAK) (клон 77, разведение 1:1000; № 610088) и анти-p-специфической FAK (pY397; клон 18, разведение 1:1000; № 611807) (все от BD Biosciences). Конъюгированные с HRP козьи антимышиные IgG (разведение 1:5000; Upstate Biotechnology) служили в качестве вторичных антител. Мембраны были кратковременно инкубированы с реагентом для обнаружения ECL (ECL™; Amersham, GE Healthcare, Мюнхен, Германия) для визуализации белков, а затем проанализированы с помощью системы Fusion FX7 (Peqlab, Эрланген, Германия). β-актин (1:1000; Sigma-Aldrich) служил в качестве внутреннего контроля.

Для анализа плотности пикселей белковых полос использовалось программное обеспечение Gimp 2.8. Было рассчитано соотношение интенсивности белка/интенсивности β-актина, выраженное в процентах по отношению к контрольным значениям, принятым за 100%.

Блокировка экспериментов

Чтобы определить, влияют ли интегрины α5 и α6 на метастатическое распространение независимо от амигдалина в клеточных линиях Caki-1, KTC-26 и A498, клетки инкубировали в течение 60 мин с 10 мкг /мл мышиных моноклональных антител против интегрина α5 (клон P1D6) или крысиных моноклональных антител против интегрина α6 (клон NKI-GoH3) (оба от Millipore). Контрольные образцы инкубировали только с клеточной культуральной средой. Затем адгезию опухолевых клеток к иммобилизованному коллагену, а также хемотаксис анализировали, как описано выше.

Статистический анализ

В настоящем исследовании все эксперименты проводились 3–6 раз. Статистическая значимость определялась с помощью U-критерия Вилкоксона, Манна-Уитни. Значение p < 0,05 считалось указывающим на статистически значимое различие.

Результаты

Амигдалин блокирует взаимодействие между эндотелием опухолевых клеток и матриксом опухолевых клеток

После 24 часов обработки амигдалином адгезия опухолевых клеток A498 к HUVEC значительно снизилась, но адгезия клеток Caki-1 и KTC-26 не снизилась (по сравнению с необработанными контролями, принятыми за 100%) ( рис. 1 ). Увеличение времени воздействия амигдалина до 2 недель значительно снизило адгезию к HUVEC во всех трех линиях опухолевых клеток ( рис. 1 ).

Рисунок 1

Адгезия Caki-1, KTC-26 и A498 к эндотелию (эндотелиальные клетки пуповины человека; HUVEC). Опухолевые клетки обрабатывали 10 мг/мл амигдалина в течение 24 ч или 2 недель. Контрольные образцы оставались необработанными. Опухолевые клетки (0,5×106 клеток/лунку) добавляли и оставляли на монослое HUVEC в течение 1, 2 или 4 ч. Оценивалось среднее количество адгезированных опухолевых клеток из пяти полей, а также рассчитывался процент обработанных клеток почечно-клеточной карциномы (RCC) по сравнению с необработанными контрольными клетками (принято за 100%, пунктирная линия). *Значительное различие с контрольными образцами. Полоски указывают среднее значение ± стандартное отклонение (SD). n=5 экспериментов, p≤0,05.

Амигдалин вызвал значительное снижение связывающей способности всех трех линий клеток RCC с иммобилизованным коллагеном и фибронектином по сравнению с контрольной группой ( рис. 2 ). Прикрепление всех трех линий клеток к матричным белкам было снижено через 24 часа, а также через 2 недели. В клеточной линии KTC-26 кратковременное применение амигдалина (24 часа) вызвало большее снижение адгезии, чем долгосрочное применение амигдалина (2 недели).

Рисунок 2

(A) Адгезия Caki-1, KTC-26 и A498 к иммобилизованному коллагену (слева) и (B) фибронектину (справа). Опухолевые клетки обрабатывали 10 мг/мл амигдалином в течение 24 ч или 2 недель. Необработанные клетки почечно-клеточной карциномы (ПКР) служили в качестве контроля. Клетки (0,1×106 клеток/лунка) добавляли к иммобилизованному коллагену или фибронектину. Среднее количество адгезированных опухолевых клеток из пяти полей рассчитывали через 30 мин. *Значительное различие с контролем. Полоски указывают среднее значение ± стандартное отклонение (SD). n=6 экспериментов, p≤0,05.

Амигдалин изменяет подвижность опухолевых клеток почечно-клеточного рака

Хемотаксическая активность клеток Caki-1, KTC-26 и A498 значительно снизилась после 24 ч и 2 недель применения амигдалина по сравнению с необработанными контрольными клетками ( рис. 3A ). Инвазия опухолевых клеток через покрытые коллагеном мембраны transwell также значительно снизилась в клетках Caki-1 и A498 после 24 ч и 2 недель применения амигдалина ( рис. 3B ). Однако 2 недели применения амигдалина не снизили инвазивную способность клеток KTC-26.

Рисунок 3

Влияние амигдалина на клетки почечно-клеточной карциномы (ПКР): хемотаксис (A) и инвазия (B). Клетки ПКР, обработанные амигдалином в течение 24 ч или 2 недель, высевали в верхнюю камеру с хемоаттрактантом в лунке ниже. Подсчитывали клетки, мигрирующие через мембрану через 20 ч. Контрольные клетки не получали амигдалин и были установлены на 100% (пунктирная линия). *Значительное различие с контрольными клетками. Полоски указывают среднее значение ± стандартное отклонение (SD). n=5 экспериментов, p≤0,05.

Амигдалин модулирует поверхностную экспрессию интегрина α и β

Клетки Caki-1, KTC-26 и A498 характеризовались различными базальными поверхностными паттернами экспрессии интегринов α и β ( рис. 4A ). Caki-1 заметно экспрессировал α3 и β1, умеренно экспрессировал α5 и β3, тогда как α1, α2, α4, α6 и β4 были лишь незначительно обнаружены. KTC-26 сильно экспрессировал α3 и β1. Члены подтипа α1, α2, α5, α6, β3 и β4 были умеренно экспрессированы, а α4 не был обнаружен. Профиль экспрессии интегринов A498 был похож на профиль KTC-26, за исключением α4, который был обнаружен для A498. Мы также отметили, что β4 присутствовал в клетках KTC-26, но не в клетках A498.

Рисунок 4

(A) Базальная поверхностная экспрессия подтипов интегрина почечно-клеточной карциномы (RCC) и (B) разница (%) с необработанным контролем через 24 часа или 2 недели воздействия амигдалина. RFI, относительная интенсивность флуоресценции. nd, не обнаруживается. *Значительная разница с контролем. Полоски указывают среднее значение ± стандартное отклонение (SD), p≤0,05.

Применение амигдалина в течение двадцати четырех часов и в течение двух недель изменило профиль поверхности интегрина, который является специфическим для типа клеток ( рис. 4B ). Мы отметили, что α5 и α6 были значительно подавлены во всех клеточных линиях после двух недель воздействия амигдалина. β1, который был сильно выражен во всех трех клеточных линиях, также был значительно снижен после двух недель применения амигдалина. Высокая базальная экспрессия рецептора α3 была снижена в Caki-1 и KTC-26, но не в A498, под действием амигдалина. Различия также были отмечены в отношении α2 и β3, оба из которых были снижены в клетках Caki-1, но повышены в клетках KTC-26 и A498 через две недели. Сниженные уровни экспрессии β4 были обнаружены в клетках Caki-1 и KTC-26 после воздействия амигдалина.

Амигдалин влияет на общее содержание клеточных интегринов

Оценка содержания белка интегрина после 24 ч воздействия амигдалина выявила значительную положительную регуляцию α2 и отрицательную регуляцию α3 и p-FAK ( рис. 5 ). β1 был значительно повышен в Caki-1 и KTC-26, тогда как α6 был значительно снижен в Caki-1 и A498, а общее содержание α5 было снижено в клетках A498 через 24 ч. В клетках Caki-1 α4 и β4 увеличились, а β3 уменьшился.

Рисунок 5

(A) Вестерн-блот-анализ общего содержания интегрина в клетках Caki-1, KTC-26 и A498, подвергнутых воздействию амигдалина в течение 24 ч или 2 недель, и необработанных контролях. В качестве внутреннего контроля использовался β-актин. (B) Анализ плотности пикселей белковых полос вестерн-блоттинга. Соотношение интенсивности белка/интенсивности β-актина было рассчитано и выражено в процентах по отношению к контролям, установленным на 100% (0) после того, как клетки подвергались воздействию амигдалина в течение 24 ч или 2 недель. Показан один представитель из трех отдельных экспериментов. nd, не обнаружено. *Значительное различие с контролями, p≤0,05.

После 2 недель воздействия амигдалина интегрин α2 значительно увеличился, даже больше, чем после воздействия в течение 24 часов. В клетках A498 α3 и β3 увеличились после 2 недель воздействия амигдалина. Снижение β1 и p-FAK произошло в клетках KTC-26, а β4 был подавлен как в Caki-1, так и в KTC-26 после 2 недель воздействия амигдалина ( рис. 5 ).

Блокировка экспериментов

Профили экспрессии интегрина всех трех линий клеток были изменены амигдалином. Поскольку поверхностный интегрин α5 и интегрин α6 были сильно снижены во всех трех линиях клеток после применения амигдалина, эти интегрины были выбраны для исследований функциональной блокировки, чтобы выяснить, коррелируют ли эти снижения с изменениями адгезии и миграции опухолевых клеток. Блокирование α5 привело к значительному ингибированию адгезии клеток KTC-26 и A498 к коллагену ( рис. 6A ). Однако адгезия клеток Caki-1 к коллагену не была существенно затронута. Блокирование интегрина α5 привело к снижению хемотаксической активности во всех трех линиях клеток ( рис. 6B ). Блокирование рецептора α6 не оказало существенного влияния на адгезию к коллагену ни в одной из линий клеток ( рис. 6A ), но значительно снизило хемотаксис во всех трех линиях клеток ( рис. 6B ).

Рисунок 6

Влияние функциональной блокировки интегрина α5 и α6 на (A) адгезию клеток к коллагену и (B) хемотаксис. Неблокированные клетки служили в качестве контроля (100%, пунктирная линия). Оценивалось среднее количество адгезированных или хемотаксически активных клеток из пяти полей (0,25 мм2). Полосы указывают среднее значение ± стандартное отклонение (SD). *Значительное различие с контролем. n=3 эксперимента, p≤0,05.

Обсуждение

Было отмечено, что взаимодействие между опухолевыми клетками и эндотелием играет решающую роль в метастатической прогрессии; адгезия клеток немелкоклеточного рака легких (НМРЛ) к эндотелию стенки сосудов была связана с трансмиграцией опухолевых клеток, что приводит к метастазам в мозг и лимфатические узлы ( 7 ). Более агрессивный, метастазирующий фенотип рака также был связан с повышенной адгезией ( 7 ). В настоящем исследовании мы продемонстрировали, что воздействие амигдалина привело к значительному ингибированию связывающего взаимодействия между клетками RCC и монослоем HUVEC, коллагеном и фибронектином. Таким образом, была ингибирована хемотаксическая и инвазивная активность клеток RCC. Такое ингибирование является клинически значимым, поскольку трансэндотелиальная миграция и подвижное распространение являются критическими этапами в распространении и прогрессировании опухоли ( 3 ) и коррелируют с плохой выживаемостью. Снижение миграционного потенциала было связано с успешной терапией опухолей и менее злокачественным фенотипом опухоли ( 8 ). Таким образом, мы предполагаем, что ингибирование адгезии и подвижности клеток почечно-клеточного рака амигдалином снижает распространение метастазов.

Эффект амигдалина на блокирование адгезии и миграции не ограничивается клетками почечно-клеточного рака. Недавно было показано, что амигдалин также подавляет адгезивное поведение клеток рака мочевого пузыря ( 5 ). Хотя амигдалин оказывал схожее подавляющее действие на адгезионные свойства клеток рака мочевого пузыря и почечно-клеточного рака, миграция клеток рака мочевого пузыря была затронута амигдалином по-разному. Хемотаксис был подавлен в двух, но повышен в одной линии клеток рака мочевого пузыря после воздействия амигдалина, что указывает на то, что влияние амигдалина, вероятно, зависит от сущности опухоли. Таким образом, важно исследовать влияние амигдалина на различные сущности опухоли.

Семейство интегринов вовлечено во все этапы метастатической прогрессии опухоли ( 4 , 7 ). Интегрин α5 повышается в опухолевых клетках эпителиального происхождения, и была установлена ​​положительная корреляция между экспрессией интегрина α5 и адгезией клеток почечно-клеточного рака ( 9 ). В настоящем исследовании введение амигдалина значительно снизило поверхностный интегрин α5 во всех трех клеточных линиях. Кроме того, общее клеточное содержание интегрина α5 в зависимости от времени снижалось в присутствии амигдалина. Блокирование функции интегрина α5 вызвало значительное ингибирование адгезии клеток KTC-26 и A498 к коллагену и снижение хемотаксической активности всех используемых клеточных линий. В соответствии с настоящими данными, снижение регуляции интегрина α5 ранее было связано со снижением адгезивного и инвазивного поведения нескольких типов раковых клеток ( 10–12 ) .

В настоящем исследовании мы отметили, что адгезия коллагена клеток Caki-1 не снизилась после блокирования интегрина α5, в отличие от вызванного амигдалином снижения в клетках A498 и KTC-26. Подобное различие в функции интегрина между типами опухолевых клеток наблюдалось ранее. Было показано, что блокирование интегрина α5 ингибирует взаимодействие клеток с матриксом клеток рака мочевого пузыря HCV29 и BC3726, но усиливает связывание линий клеток рака мочевого пузыря T24 и Hu456 (оснащенных другим набором интегринов) ( 13 ). Аналогичным образом, было показано, что блокирование интегрина β1 ингибирует прикрепление клеток рака мочевого пузыря UMUC-3 к коллагену, но оказывает противоположный адгезивный эффект на клетки TCCSUP, которые характеризуются другим профилем экспрессии интегринов ( 5 ). В настоящем исследовании воздействие амигдалина вызвало увеличение поверхностного β3 интегрина в клетках KTC-26 и A498, но уменьшение в клетках Caki-1. Контррегуляция с участием другого подтипа интегрина, в данном случае β3, может объяснить, почему блокирование α5 не остановило адгезию в клетках Caki-1. Потеря интегрина α5 вызвала снижение хемотаксиса во всех трех клеточных линиях. Поэтому мы предполагаем, что потеря поверхностного интегрина α5 является механизмом, посредством которого амигдалин действует на миграцию клеток RCC, а тонкая настройка производительности интегрина зависит от конкретного профиля интегрина в конкретной клеточной линии.

Было показано, что интегрин α6 облегчает миграцию эпителиальных клеток и коррелирует с риском прогрессирования, метастазирования и смерти в клинических испытаниях ( 14 ). Другие исследования показали, что интегрин α6 способствует миграции и инвазии при колоректальном раке ( 15 ), а также карциномах поджелудочной железы ( 16 ) и молочной железы ( 17 ). Было отмечено, что интегрин α6 активирует FAK ( 18 ) и связанную с FAK нисходящую сигнализацию, которая имеет отношение к контролю подвижности клеток, выживаемости и пролиферации ( 4 ). В настоящем исследовании поверхностная экспрессия интегрина α6 была значительно снижена, а FAK был дезактивирован амигдалином во всех трех клеточных линиях. Блокирование поверхностного интегрина α6 показало, что α6 не мешает адгезии опухолевых клеток, но регулирует подвижность клеток. Поэтому вполне вероятно, что снижение α6 представляет собой механизм, с помощью которого амигдалин замедляет распространение клеток.

Было показано, что интегрин β1 способствует инвазии клеток при раке молочной железы, легких, поджелудочной железы и колоректальном раке, а также при глиоме, меланоме ( 4 ) и нейробластоме ( 19 ). В клетках рака предстательной железы было показано, что повышение уровня интегрина β1 сопровождается повышенным подвижным поведением, тогда как блокада интегрина β1 способствует снижению хемотаксиса, миграции и адгезии клеток ( 10 ). Ингибирование интегрина β1 было связано с уменьшением инвазии и метастазирования рака яичников ( 12 ), а ингибитор пептида интегрина α5β1, как было показано, блокирует метастазирование рака молочной железы in vivo ( 20 ). В настоящем исследовании поверхностный интегрин β1 был снижен во всех трех линиях опухолевых клеток после 2 недель воздействия амигдалина. Таким образом, амигдалин может воздействовать на интегрин β1, замедляя подвижное распространение клеток почечно-клеточного рака.

Исследования in vitro и in vivo показывают, что α3 является еще одним интегрином, участвующим в инвазии глиомы, меланомы, гепатоцеллюлярной и молочной карциномы, а также способствует метастазированию клеток молочной железы в легкие ( 4 ). Блокирование интегрина α3 привело к ингибированию адгезии клеток рака простаты ( 21 ). В настоящем исследовании поверхностный интегрин α3 был снижен в клетках Caki-1 и KTC-26, но не в клетках A498. Это неоднородное снижение указывает на специфичный для клеточной линии эффект, вызванный амигдалином.

Применение амигдалина, помимо модуляции экспрессии поверхностного интегрина, также изменило общее содержание клеточного интегрина. В настоящем исследовании общая экспрессия клеточного интегрина α2 была повышена во всех трех линиях опухолевых клеток после воздействия амидалина. Предыдущие исследования показали, что снижение уровня интегрина α2 в опухолевых клетках потенциально увеличивает распространение опухолевых клеток, а повторная экспрессия интегрина α2, как было показано, обращает вспять злокачественные свойства клеток рака молочной железы ( 22 ). Следовательно, мы предполагаем, что индуцированное амигдалином ингибирование адгезии и миграции опухолевых клеток, наблюдаемое здесь, связано с повышением регуляции интегрина α2.

Общий клеточный интегрин α3 снизился через 24 ч после нанесения амигдалина во всех трех клеточных линиях. Это согласуется с вызванным амигдалином снижением поверхностного α3 в клетках Caki-1 и KTC-26. Поскольку поверхностный α3 не был изменен в клетках A498, возможно, что амигдалин в этой клеточной линии действует через внутриклеточные сигнальные пути α3. p-FAK, который был сильно снижен в клетках A498 через 24 ч после нанесения амигдалина, подтверждает эту гипотезу, поскольку ось α3-FAK участвует в инициации и прогрессировании рака ( 23 ). Ли и др. продемонстрировали, что FAK является критическим медиатором опухолеобразования и метастазирования, которые частично зависят от интегрина α3 ( 24 ). Поэтому мы предполагаем, что снижение как интегрина α3, так и FAK дезактивирует двигательный аппарат клеток A498.

Общий клеточный интегрин β1 был повышен в клетках Caki-1 после применения амигдалина, в то время как поверхностная экспрессия была снижена. Этот тип сдвига не является необычным и указывает на транслокацию рецептора с поверхности во внутриклеточный компартмент. Хотя значимость этого процесса не полностью понята, было показано, что перемещение интегрина β1 к плазматической мембране увеличивает метастатический потенциал клеток RCC, тогда как остановка рециркуляции β1 путем поддержания высокого содержания цитоплазматической и низкого содержания плазматической мембраны снижает метастазирование ( 25 ). Было показано, что повышение внутриклеточного β1 связано с дезактивацией FAK ( 25 ), что коррелирует с настоящими результатами.

Эффекты амигдалина на экспрессию подтипа интегрина зависели от клеточной линии, от того, было ли время применения острым (24 ч) или хроническим (2 недели) и от того, находился ли интегрин на поверхности клетки или в цитоплазме. Таким образом, молекулярный способ действия амигдалина в отношении экспрессии подтипа интегрина не является однородным и может влиять как на механическое межклеточное сцепление, запускаемое интегрином, так и на активацию биохимического пути, контролируемого интегрином.

В трех исследованных линиях клеток RCC применение амигдалина значительно снизило инвазивное и подвижное поведение. Однако 2 недели применения амигдалина не снизили инвазивную способность клеток KTC-26. Снижение было преимущественно связано с уменьшением поверхностных интегринов α5 и α6. Однако этот механизм не следует обобщать. Хотя было показано, что амигдалин также ингибирует адгезию и миграцию в клетках рака мочевого пузыря, интегрины изменяются по-разному. Интегрины α5 и α6, по-видимому, являются важной мишенью амигдалина в клетках RCC, тогда как модуляция интегринов β1 или β4 была наиболее очевидна в клетках рака мочевого пузыря ( 5 ). Были начаты дальнейшие исследования in vitro , чтобы оценить, влияет ли амигдалин также на рост клеток RCC, как это наблюдалось для клеток рака мочевого пузыря ( 6 ).

В заключение, воздействие амигдалина на клетки RCC подавляет метастатическое распространение и связано с подавлением α5 и α6 интегринов. Таким образом, амигдалин проявляет противоопухолевую активность in vitro в RCC. Эта активность in vitro должна быть оценена на модели животных.

Благодарности

Настоящее исследование было поддержано «Фондом Бригитты и Норберта Мут» и «Друзья и сторонники Франкфуртского университета Гете».

Антиноцицептивный эффект амигдалина, выделенного из Prunus armeniaca, на боль, вызванную формалином у крыс

Антиноцицептивный эффект амигдалина,

выделенного из Prunus armeniaca, на боль, вызванную формалином у крыс


оригинал статьи:

 https://www.academia.edu/22726752/Antinociceptive_Effect_of_Amygdalin_Isolated_from_Prunus_armeniaca_on_Formalin_Induced_Pain_in_Rats


Аннотация

Амигдалин — растительный глюкозид, выделенный из косточек розоцветных плодов, таких как абрикосы, персики, миндаль, вишня и слива. Чтобы исследовать обезболивающую активность амигдалина, мы вызывали боль у крыс посредством интраплантарной инъекции формалина и оценивали антиноцицептивный эффект амигдалина в дозах 0,1, 0,5, 1,0 и 10,0 мг/кг веса тела, наблюдая за ноцицептивным поведением, таким как облизывание, кусание и встряхивание, числом Fos-иммунореактивных нейронов в спинном мозге и экспрессией мРНК воспалительных цитокинов в коже подошвы. Внутримышечная инъекция амигдалина значительно уменьшала тоническую боль, вызванную формалином, как в ранней (первые 10 мин после инъекции формалина), так и в поздней фазе (через 10–30 мин после первоначальной инъекции формалина). В поздней фазе амигдалин действительно уменьшал вызванную формалином боль дозозависимым образом в диапазоне доз менее 1 мг/кг. Молекулярный анализ, нацеленный на c-Fos и воспалительные цитокины, такие как фактор некроза опухоли-альфа (ФНО-альфа) и интерлейкин-1 бета (ИЛ-1бета), также показал значительный эффект амигдалина, который соответствовал результатам поведенческого анализа боли. Эти результаты свидетельствуют о том, что амигдалин эффективен для облегчения воспалительной боли и что его можно использовать в качестве анальгетика с антиноцицептивной и противовоспалительной активностью.

Амигдалин как перспективный противораковый агент: молекулярный Механизмы и будущие перспективы развития Новые наноформулы для его доставки

преведено с английского SAID-lab.com

Амигдалин как перспективный противораковый агент:

молекулярный Механизмы и будущие перспективы развития Новые наноформулы для его доставки



Аннотация: Уровень заболеваемости раком растет, и рак является одной из основных причин смертности во всем мире. Амигдалин, также известный как витамин B17 (и лаэтрил, синтетическое соединение), представляет собой цианогенное гликозидное соединение, которое в основном содержится в ядрах и мякоти фруктов. Это соединение на протяжении десятилетий предлагалось как многообещающее природное вещество, которое может оказывать противораковое действие. Это всеобъемлющий обзор, в котором критически обобщаются и тщательно анализируются имеющиеся исследования, изучающие противораковый эффект амигдалина, подчеркиваются его потенциальные противораковые молекулярные механизмы, а также необходимость создания нетоксичной рецептуры этого вещества. Углубленное исследование проводилось с использованием наиболее точных научных баз данных, например, PubMed, Cochrane, Embase, Medline, Scopus и Web of Science, с применением эффективных, характерных и релевантных ключевых слов. Есть несколько доказательств, подтверждающих идею о том, что амигдалин может оказывать противораковое действие при раке легких, молочной железы, простаты, колоректального рака, рака шейки матки и желудочно-кишечного тракта. Сообщалось, что амигдалин индуцирует апоптоз раковых клеток, ингибируя пролиферацию раковых клеток и замедляя метастатическое распространение опухоли. Однако на моделях животных in vivo было проведено лишь несколько исследований , а клинические исследования остаются еще более скудными. Имеющиеся данные не могут поддержать рекомендации по использованию пищевых добавок с амигдалином из-за его цианогруппы, которая вызывает неблагоприятные побочные эффекты. Предварительные данные показали, что использование наночастиц может быть многообещающей альтернативой для усиления противоракового эффекта амигдалина при одновременном снижении его неблаго Амигдалин, по-видимому, является многообещающим природным агентом против развития и прогрессирования раковых заболеваний. Тем не менее, существует большая потребность в исследованиях на животных in vivo , а также клинических исследованиях на людях для изучения потенциальной эффективности профилактики и/или лечения амигдалина против рака. Более того, амигдалин можно использовать в качестве ведущего соединения, эффективно применяя последние разработки в процессах разработки лекарств.



  1. Введение


 

Характеристика глобальных изменений бремени болезней и тенденций с течением времени дает важную информацию об этиологии рака и служит основой для стратегий профилактики и лечения. Злокачественные новообразования считаются основной причиной смертности во всем мире; число новых случаев рака во всем мире достигло 19,3 миллиона, и в 2020 году умерло почти 10 миллионов человек [1]. Вызывают тревогу новые данные, согласно которым число новых случаев заболевания с 2020 по 2040 год во всем мире составит 28,4 миллиона человек [2]. Кроме того, самые последние данные Всемирной организации здравоохранения (ВОЗ) показывают, что рак молочной железы остается наиболее распространенным злокачественным заболеванием у женщин в 158 из 183 стран (86%) и основной причиной смертности от рака в 173 из 183 стран.

 

95%) [3]. По данным Глобальной статистики рака 2020 года (GLOBOCAN) второй наиболее распространенной причиной смертности от рака во всем мире и третьей по распространенности злокачественной опухолью с точки зрения диагностики является колоректальный рак [1,4]. Более того, текущие модели смертности и долгосрочные тенденции для основных типов рака в 47 странах мира, исключая Африку, показывают, что уровень заболеваемости раком, связанным с инфекциями, таким как рак шейки матки и рак желудка, и раком, связанным с курением, таким как рак легких и пищевода, увеличились примерно в 10 раз [5]. В Европейском Союзе (ЕС) общее прогнозируемое число смертей от рака в 2023 году оценивается в 1 261 990 (702 214 среди мужчин, 559 776 среди женщин) [6]. Общая смертность от рака в 2022 году оценивалась в 1 269 200 [7], при этом колоректальный рак и рак легких были ведущими причинами смертности от рака (>30%)в ЕС. В Греции число новых случаев в 2020 г. составило 64 530, а количество смертей — 33 166 [5–7]. В США число новых случаев рака в 2023 году составит примерно 1 958 310, или примерно 5 370 случаев в день [8]. В этом контексте следует отметить, что эти оценки случаев на 2023 г. основаны

на недавно доступных данных о заболеваемости до 2019 г. и не учитывают влияние пандемии COVID-19 на

 

Соответственно, прогноз смертности от рака в 2023 году основан на данных до 2020 года [8].

 

Темой, представляющей интерес, является роль амигдалина, также известного как витамин B17 или лаэтрил (его синтетическое соединение), в профилактике и/или совместном лечении рака. Несколько исследований продемонстрировали широкий спектр биологических свойств амигдалина, предполагая, что он может оказывать профилактическое или даже сопутствующее воздействие на рак шейки матки, молочной железы, простаты, легких и мочевого пузыря, что в основном можно объяснить ингибированием рака. пролиферация клеток [9–13]. Как in vitro , так и in vivo оценки биологического действия экстрактов амигдалина из трех сортов маниоки (Manihot esculenta), выращенных в Бенине, продемонстрировали, что эта встречающаяся в природе молекула может эффективно действовать в профилактике рака и совместном лечении, подавляя образование раковых клеток [14]. ]. Исследования in vitro задокументировали индукцию апоптоза амигдалином из-за увеличения экспрессии белка Bax и каспазы-3 и снижения экспрессии антиапоптотического белка Bcl-2 [15,16]. В области химиопрофилактического потенциала амигдалина Erikel et al. (2023) отметили, что амигдалин может оказывать модулирующее действие на химиотерапевтические агенты, которые, по-видимому, вызывают геномные повреждения лимфоцитов человека [17].

 

Основные противораковые молекулярные механизмы амигдалина в основном связаны с ингибированием клеточного цикла, индукцией апоптоза, стимуляцией цитотоксического эффекта и регуляцией иммунной функции в организме человека [15,18,19]. Более того, основным молекулярным механизмом апоптоза является активация протеазы каспазы-3, которая инициируется клеточной репликацией белка Bax цитохрома С [20]. Высокая экспрессия проапоптотического белка Bax связана с апоптозом и последующей пролиферацией клеток [ 21]. В связи с этим считается, что амигдалин индуцирует апоптоз за счет увеличения активности каспазы-3 в клетках HeLa и подавления Bcl-2 [22]. Параллельно выяснилось, что Bax активируется в клетках HeLa, обработанных амигдалином, что позволяет предположить, что в апоптозе может быть задействован эндогенный путь [22]. Несколько линий клеток человека, в том числе раковых клеток легких, молочной железы, толстой кишки, яичек, предстательной железы, прямой кишки и мочевого пузыря, показали, что амигдалин может вызывать апоптоз и остановку клеточного цикла [19,20,22–26].


 

Несмотря на многообещающие результаты имеющихся в настоящее время исследований по изучению противораковых

 

эффектов амигдалина, существует большая потребность в дальнейших исследованиях по этой теме. На сегодняшний день Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) не одобрило медицинское использование амигдалина.

при одновременном лечении рака или других заболеваний в США, поскольку отсутствия адекватных данных об эффективности амигдалина и риске потенциального

 

неблагоприятные побочные эффекты [27,28]. В связи с этим целью настоящего обзора было критически обобщить и тщательно изучить имеющиеся данные о потенциальных противораковых эффектах амигдалина, подчеркивая его противораковые молекулярные механизмы и его возможное будущее применение в клинической практике борьбы с раком.

 


  1. Методы


 

Всесторонний и углубленный обзор был проведен с использованием наиболее точных научных баз данных, например, PubMed, Scopus, Web of Science и Google Scholar, с применением

 

эффективные, характерные и релевантные ключевые слова, такие как «амигдалин» или «лаэтрил» или «витамин B17» и «токсичность», «противоопухолевые эффекты» и/или «рак» и «молекулярные механизмы».

 

Критериями включения были исследования, написанные на английском языке, клинические исследования на людях,

 

исследования на животных in vitro и in vivo , а также рандомизированные клинические исследования (РКИ). Серая литература,

 

комментарии, редакционные статьи, письма в редакцию, рецензии, тезисы в материалах конференций,

 

а статьи в нерецензируемых журналах были исключены из окончательного анализа.

 

поиск был дополнен сканированием списков литературы соответствующих исследований и ручным

 

поиск ключевых журналов, комментариев, редакционных статей и тезисов в материалах конференций . Полученные опросы были дополнительно тщательно проверены на предмет наличия соответствующих исследований.

цитируются в их тексте.

 

Все авторы выступали в качестве рецензентов. Чтобы повысить согласованность действий рецензентов, все рецензенты

 

проверил все полученные публикации, обсудил результаты и внес изменения в процедуру проверки и

 

руководство по извлечению данных перед началом проверки для этого обзора. Все рецензенты работали в парах последовательно оценить названия, аннотации, а затем полные тексты всех публикаций

выявленные в ходе поиска потенциально релевантных публикаций. Мы разрешили разногласия по

 

отбор исследований и извлечение данных путем консенсуса и обсуждения со всеми авторами/рецензентами,

 

если нужно. Форма диаграммы данных была совместно разработана двумя рецензентами (MS и CG) для

 

определить, какие переменные следует извлечь. Два рецензента независимо друг от друга составили диаграммы данных.

 

обсуждали результаты и постоянно обновляли форму диаграммы данных в рамках итеративного процесса.




  1. Результаты


 

3.1. Амигдалин: основная информация и свойства

 

Амигдалин был открыт в 1803 году Шрейдером при исследовании ингредиентов горького миндаля.

 

и был впервые выделен в 1830 году двумя французскими химиками, Пьером-Жаном Робике и Антуаном.

 

Франсуа Бутрон-Шарлар [29,30]. Химики Хауорт и Уайлам наконец определились.

 

его точная химическая структура в 1923 году (рис. 2) [31]. Амигдалин (d-манделонитрил-β-d- глюкозид-6-β-глюкозид) представляет собой цианогенное гликозидное соединение, состоящее из дибензальдегида , синильной кислоты и двух молекул глюкозы (D-манделонитрил-β-D-глюкозид- 6 -глюкозид). β-глюкозид) [32]. Его биоактивная форма (D-манделонитрил-β-глюкоза) была использована в

 

Патент штата (USP). Лаэтрил — частично искусственная, синтетическая форма природного вещества.

 

амигдалин (рис. 2) [32]. В Мексике структура была дифференцирована и определена как D- манделонитрил-β-гентиобиозид [33]. Национальный центральный институт США (NCI) продемонстрировал

что мексиканская форма амигдалина (пероральная и внутривенная) не соответствует требованиям препарата США. стандартам, и это вещество было запрещено для потребления человеком [33]. Амигдалин в основном содержится в ядрах и мякоти таких фруктов, как сливы, абрикосовые косточки, черешня, персики.





Цитотоксический эффект амигдалина на раковые клетки in vitro и распределение амигдалина в растениях, которые

 

Содержаниеобычнопотребляютсяамигдалинаврационеврастенияхчеловека,являются,которыедвумяобычноизних.употребляются в пищу человеком, являются

 

наиболеедвумянаиболееинтересныеинтереснымитемыпоследнихтемамиисследованийнедавнихиссле.Однакоованийэто. Однаконеновоеэтосоединениеновое,соединениеоновеками, и оно имеет использовалось в традиционной и альтернативной медицине из-за его противораковых и противораковых свойств. использовался в традиционной и альтернативной медицине на протяжении веков благодаря своим противораковым

 

противовоспалительнымьныесвойствам и, в целом,,многочисленнымегомногочисленныемедицинскицинскиемпреимуществампреимущества[35,36,38][35,36,38].Это.

Это помогло облегчить боль и лихорадку; подавление кашля, жажды и тошноты; и в качестве

помог облегчить боль и лихорадку; подавление кашля, жажды и тошноты; и средство для профилактики


  • сопутствующего лечения рака в последние годы [39,40].
  • качестве средства профилактики и сопутствующего лечения рака в последние годы [39,40].


 

3.2. Противораковые эффекты и молекулярные механизмы амигдалина: данные in vitro и in vivo

3.2. Противораковые эффекты и молекулярные механизмы амигдалина: данные in vitro и in vivo

 

На сегодняшний день в нескольких исследованиях изучались потенциальные противораковые эффекты амигдалина.

На сегодняшний день несколько исследований изучили потенциальные противораковые эффекты амигдалина,

подчеркнув его противораковые молекулярные механизмы, особенно в легких, молочной железе, предстательной железе,

подчеркивая его противораковые молекулярные механизмы, особенно при раке легких, молочной железы, предстательной

железы, колоректального рака, рака шейки матки и желудочно-кишечного тракта. Потенциальные противораковые эффекты и

рак прямой кишки, шейки матки и желудочно-кишечного тракта. Потенциальные противораковые

эффекты и молекулярные механизмы амигдалина изображены на рисунке 3. Клинические исследования на людях

Механизмы действия амигдалина изображены на рисунке 3. Клинические исследования на людях, а

также на раковых клетках человека и животных представлены в таблице 1.

а также в раковых клетках человека и животных представлены в табл. 1.



3.2.1. Рак легких

 

Амигдалин может быть полезен в качестве вспомогательного терапевтического средства при опухолях легких.

Этот ком- 3.2.1. Рак легких

 

фунт значительно индуцировал апоптоз клеток рака легких A549 и PC9 в определенной дозе. Амигдалин может быть полезен в качестве совместного терапевтического агента при опухолях легких. Этот взаимозависимый путь посредством митохондриально-опосредованного и каспазозависимого апоптоза

 

 значительно индуцировал апоптоз клеток рака легких A549 и PC9 в дозовом пути [41]. Одновременно в клетках рака легких A549 и PC9 наблюдалось увеличение цитохрома C и усиление каспазозависимой активности посредством

 

митохондриально-опосредованной и каспазозависимой активности апоптоза 9 и каспазы-3. В пробирке

 

путь [41]. Одновременно увеличение цитохрома С и усиление каспаз- ингибирования пролиферации клеточных линий рака легкого H1299/M и PA/M требовали высокой

Активность 9 и каспазы-3 наблюдалась в клетках рака легких A549 и PC9. In vitro ингибируют концентрацию амигдалина [42]. Однако при более низкой концентрации амигдалина это было

 

Для пролиферации клеточных линий рака легких H1299/M и PA/M требовалась высокая концентрация. Было обнаружено, что инвазионная и миграционная способность раковых клеток H1299/M PA/M была

 

амигдалина [42]. Однако при более низкой концентрации амигдалина наблюдалось его значительное ингибирование [42]. Таким образом, было высказано предположение, что амигдалин, вероятно, обладает способностью к инвазии и

 

миграции раковых клеток H1299/M PA/M, обладая значительной временной метастатической активностью, индуцируя апоптоз и ингибируя пролиферацию рака легких.

 

отношенииингибируетсяклеток[42]. [42]Таким. образом, было высказано предположение, что амигдалин, вероятно, обладает антиметастатической активностью в

 

индуцируя апоптоз и ингибируя пролиферацию клеток рака легких [42].

 

3.2.2. Рак молочной железы

 

3.2.2. Рак молочной железы

Было показано, что амигдалин индуцирует апоптоз и ингибирует адгезию молочной железы.

 

Примечательнозначительн,что усиливалобоих апоптоз путем подавления пролиферации клеток и повышения эффективности лучевой терапии за счет индукции остановки клеточного цикла (на стадиях клеточного цикла G1 и суб-G1) [11]. Также было обнаружено, что амигдалин снижает миграцию клеток MDA-MB-231 в большей степени, чем клеток MCF-7 [43]. Кроме того, было высказано предположение, что ингибирование протеолитических ферментов способствует активации апоптотических событий в клетках рака молочной железы MCF-7 [44]. Кроме того, было показано, что амигдалин увеличивает экспрессию Bax и снижает экспрессию Bcl-2 в клетках рака молочной железы SK-BR-3 и MCF-7. Однако по сравнению с конъюгатом аффитела амигдалин-ZHER2 влияние на экспрессию Bax и Bcl-2 в клетках SK-BR-3 было сильнее, чем в клетках MCF-7 [45]. Также была продемонстрирована способность амигдалина уменьшать рост клеток рака молочной железы человека MCF-7 и T47D в зависимости от концентрации путем стимуляции производства малонового диальдегида (MDA) и окисленного глутатиона . Более того, наблюдалось значительное снижение общего уровня глутатиона и активности глутатионредуктазы в клетках рака молочной железы [46].

 

 

3.2.3. Рак простаты

 

Амигдалин дозозависимо ингибировал рост опухоли и уменьшал опухолевые клоны в клеточных линиях рака простаты путем ингибирования фазы G0/G1 [47]. Более того, было очевидно ингибирование роста клеток рака предстательной железы и роста опухоли под действием амигдалина, что указывает на функцию метаболических ферментов бетаглюкозидазы (β-глюкозидазы) и роданезы в регулировании противораковой активности амигдалина in vivo [10]. Активацию амигдалина β -глюкозидазой можно рассматривать как стратегию ферментной/лекарственной терапии, которая может стать новым многообещающим подходом к таргетному лечению рака простаты [48]. Было также обнаружено, что воздействие амигдалина на некоторые клетки рака предстательной железы, такие как DU-145, ингибирует распространение метастазов, чему способствует интегрин α6 [49].

 

3.2.4. Колоректальный рак

 


  • альтернативной и традиционной медицине амигдалин обычно используется для профилактики и лечения


 

злокачественных новообразований колоректальных опухолей [50]. Было обнаружено , что противораковый эффект амигдалина на клетки колоректального рака, например, на клетки колоректального рака SNU-C4 человека, усиливается за счет снижения экспрессии генов, связанных с клеточным циклом [51]. Сообщалось, что клетки рака толстой кишки более чувствительны к действию амигдалина по сравнению с нормальными клетками из-за более высокой концентрации β-глюкозидазы и более низких уровней печеночного фермента роданезы, который может превращать цианид в относительно безвредное соединение тиоцианат [52].

 

3.2.5. Рак шейки матки

 

Доказано, что амигдалин значительно ингибирует пролиферативную активность клеток рака шейки матки HeLa

 


  • Антиапоптотический белок Bcl-2 подавлялся, а проапоптотический Bax повышался в клетках HeLa, обработанных амигдалином [22]. Более того, соотношение Bax-к-Bcl-2 и активность каспазы-3 увеличивались при обработке амигдалином в клетках HeLa, усиливая апоптотический эффект амигдалина на клетки рака шейки матки [22,53].


 

3.2.6. Рак желудочно-кишечного тракта

 

Было продемонстрировано, что амигдалин стимулирует процесс апоптоза путем повышения

 

экспрессии каспазы-3 и снижения экспрессии Bcl-2, а также ингибирования пролиферации

 

гепатоцеллюлярных раковых клеток HepG2 и EAC и повышения экспрессии Beclin-1 [54].

 

Примечательно , что комбинация амигдалина с метформином показала многообещающий эффект

 

по сравнению с монотерапии амигдалином; их комбинация была более цитотоксичной, демонстрируя

 

большую способность индуцировать апоптоз и останавливать клеточный цикл в гепатоцеллюлярных раковы


 

Было показано, что помимо этой комбинации активность амигдалина с цинком приводит к усилению апоптотического эффекта при лечении HepG2 по сравнению с действием амигдалина без цинка [56].


3.2.7. Другие злокачественные

 

новообразования опухолей. Ингибирующее действие амигдалина на маркеры роста и дифференцировки E- и N-кадгерин в клетках почечно-клеточного рака (ПКР) было также продемонстрировано при применении 10 г/мл амигдалина к клеточным линиям ПКР A498, Caki-1. и KTC-26 в течение 24 часов или 2 недель in vitro [35]. Исследование влияния амигдалина (1,25–10 мг/

мл) на несколько клеточных линий рака мочевого пузыря (UMUC-3, RT112 и TCCSUP) также показало положите

 

Наиболее заметное воздействие амигдалина связано с осью cdk2-циклин А.

 

Исследования по нокдауну siRNA показали положительную связь с cdk2/циклином.

 

Также было обнаружено, что амигдалин ингибирует развитие опухоли за счет подавления CDK2 и циклина [57]. Напротив, колониеобразующие клетки из лейкозных клеточных линий и нормального костного мозга были относительно толерантны к амигдалину и его метаболитам in vitro. Хотя наблюдалось увеличение скорости апоптоза, не наблюдалось избирательного разрушения между линиями лейкозных клеток человека и нормальными клетками костного мозга [58].

 

Таблица 1. Исследования, оценивающие противораковые эффекты и противораковые молекулярные механизмы амигдалина.






3.3. Токсичность амигдалина.

 

Чрезмерное употребление амигдалина может привести к отравлению (более 1 мг/л цианида в крови). Амигдалин превращается в глюкозу, бензальдегид и цианистый водород под действием эндогенного фермента (β-глюкозидазы) при измельчении фруктовых косточек. С более аналитической точки зрения, при высвобождении HCN цитохромоксидаза C может реагировать с ионом железа.

 

Это может индуцировать образование комплексов ионов металлов, которые лизуют клетки и ингибируют синтез АТФ [65].

 

Сообщалось, что амигдалин оказывает токсическое действие при приеме внутрь с добавками.

 

Пероральный прием 500 мг амигдалина может привести к высвобождению 30 мг цианида [66].

 

Токсичность цианидов может быть опасной для жизни из-за снижения утилизации кислорода

 

митохондриями, что приводит к гибели клеток. В раковых клетках отсутствует родханаза, фермент,

 

который действует как детоксифицирующий агент, связывая железо-серные центры на клеточных

 

мембранах и превращая HCN в менее токсичный метаболит – тиоцианат. Однако после парентерального

 

введения амигдалина/лаэтрила путем инъекции более 80% тиоцианата обнаруживалось в моче крыс и

 

кроликов [66]. Неблагоприятные побочные эффекты токсичности цианидов включают тахикардию,

 

спутанность сознания, тошноту, головную боль и, что более серьезно, нейромиопатию, цианоз, кому, судороги и с

 

За последние десятилетия было проведено несколько исследований in vitro и in vivo с использованием однократных или многократных доз и различных форм введения амигдалина (внутривенных и внутримышечных), которые не выявили образования HCN, что подчеркивает решающую роль кишечника в физиологии организма человека после потребление веществ. Анаэробные бактериальные типы, существующие в кишечнике, обладают высокой активностью β-глюкозидазы, которая необходима амигдалину для гидролиза HCN. Тем не менее, при определенных обстоятельствах было обнаружено, что токсичность HCN существует. В некоторых случаях токсичность была вызвана приемом различных доз амигдалина, и не было побочных эффектов HCN, связанных с высокими дозами. Несколько факторов, в том числе потребление пробиотиков или пребиотиков, диета и возраст, могут изменить кишечный консорциум, который отвечает за условия, при которых возникает токсичность. Примечательно, что не было зарегистрировано серьезных реакций на пероральный прием амигдалина

 


вдозе 3 г у больных раком, которые искали альтернативные методы лечения. Минимальная смертельная доза амигдалина для взрослого человека составляет 50 мг или 0,5–3,5 мг/кг массы тела. Однако взаимодействие с одновременным употреблением витамина С, по-видимому, активирует его неблагоприятные.

3.4. Клинические исследования амигдалина/лаэтрила при злокачественных новообразованиях опухолей человека в 20 веке

 

Несколько исследований продемонстрировали противораковую активность амигдалина и его

 

терапевтическое использование для лечения рака и облегчения боли [30,68]. Хотя научные

 

доказательства противоракового эффекта амигдалина, основанные на клинических испытаниях,

 

ограничены, было проведено несколько исследований по изучению влияния амигдалина на злокачественные оп

 

На протяжении многих лет рассматривалось несколько клинических испытаний комбинации амигдалин/

 

лаэтрил [32]. В 1980 году отдел исследований лекарственных средств Национального института рака

 

(NCI) объявил, что около 200 больных раком, «для которых никакое другое лечение не было эффективным», планировалось получить химическое вещество, специальную диету и дополнительные витамины (см . Институт начинает клинические испытания лаэтрила», 1980) [69]. В течение следующих двух лет были проведены два клинических исследования в области применения лаэтрила при раке человека. Первое из этих двух клинических испытаний было проведено в 1981 году на шести пациентах

 


  • поздней стадией рака [32]. Амигдалин вводили как внутривенно, так и перорально в течение 21 дня без признаков токсических реакций. Эти данные согласуются с предыдущими наблюдениями за пациентом после самостоятельного приема лаэтрила [70]. В 1982 году было проведено еще одно клиническое исследование с участием 178 пациентов с раком, которые получали лечение амигдалином плюс «метаболическую терапию» [59]. Никаких существенных преимуществ с точки зрения излечения, улучшения или стабилизации рака, улучшения симптомов, связанных с раком, или увеличения продолжительности жизни не наблюдалось. Опасность терапии амигдалином у нескольких пациентов была подтверждена симптомами токсичности цианида или уровнями цианида в крови, приближающимися к летальному уровню [59,69,70]. Однако следует отметить, что эти клинические испытания были проведены более 40 лет назад и теперь их следует считать устаревшими, что подчеркивает необходимость проведения новых клинических испытаний, включающих введение амигдалина в различных фармацевтических формах, которые могли бы быть более переносимыми и приемлемыми для организм человека, демонстрируя большую биоактивную эффективность и нетоксичные эффекты.


 

 

3.5. Наночастицы и амигдалин в 21 веке Наночастицы считаются

 

многообещающим биотехнологическим методом доставки лекарств и лечения злокачественных опухолей человека, избегая при этом токсичности. Несколько исследований на линиях раковых клеток человека продемонстрировали положительные результаты в отношении метаболизма амигдалина без побочных эффектов. Как уже упоминалось, амигдалин, несмотря на его противораковое действие, столкнулся с противоречиями из-за выделения цианида. Сохаил и Аббас исследовали наночастицы альгината-хитозана (ACNP) как способ введения лекарств посредством инкапсуляции и доставки амигдалина в опухолевые клетки (H1299) [64]. Наночастицы продемонстрировали стабильное высвобождение лекарственного средства в течение десяти часов и значительную скорость набухания в слабокислой и нейтральной среде. Было показано, что ACNP оказывают большее противоопухолевое действие на клеточные линии H1299, чем свободный амигдалин, что предполагает большее поглощение клетками соединения, инкапсулированного в наночастицы. В связи с этим биомиметические и биосовместимые наночастицы бальгината-хитозана могут быть использованы в качестве выгодной системы доставки лекарств для пролонгированной и контролируемой доставки амигдалина с повышенной цитотоксической активностью в отношении опухолевых клеток, одновременно защищая нормальные ткани человека и здоровые клетки [64].

 

 

 

 

Наночастицы серебра, инкапсулирующие амигдалин и сшивающие микрокапсулы, заряженные хитозаном, также были исследованы в клеточных линиях рака молочной железы. Противораковый ответ также наблюдался в рамках контролируемого высвобождения амигдалина за счет соединения хитозана, преодолевающего низкие цитотоксические эффекты при высоких дозах [63].

 

Кроме того, наночастицы продемонстрировали устойчивое высвобождение амигдалина и фолиевой кислоты и очевидную селективность в отношении клеток путем подавления роста опухоли. В то же время было обнаружено, что они повышают эффективность лучевой терапии за счет усиления апоптоза, блокирования клеточного цикла и уменьшения пролиферации клеток рака молочной железы за счет

 

снижения уровня железа и митоген-активируемых протеинкиназ (MAPK/P38). Также была показана амигдалин-фолиев


ингибировать дифференцировку экспрессии комплекса CD4 и CD80, вызывая подавление трансформации фактора роста бета (TGF-бета)/интерлейкин-6, (IL-2)/интерферон-гамма, (INF-g)/интерлейкин-2, и Экспрессия (IL-2)/фактора роста эндотелия сосудов (VEGF) на сигнальном пути при одновременной модуляции экспрессии гена CD8 и группы естественных киллеров 2D [11].

 

Мосайеби и его коллеги создали наноформулу амигдалина с β-циклодекстрином, чтобы исследовать усиление его действия против миграции клеточной линии MCF-7, апоптоза и миграции генов. Наноформулированный амигдалин показал больший эффект на опухолевые клетки, чем один амигдалин [62].

 

3.6. Пищевые добавки с амигдалином для лечения рака Амигдалин, лаэтрил

 

или витамин B17 с 1845 года заявлялись в качестве средства для лечения различных заболеваний, особенно злокачественных опухолей [33]. Однако в 1982 году возникло мнение, что амигдалин может быть токсичным препаратом и неэффективен при лечении рака [59].

 

Недавние теоретические и практические разработки показали, что амигдалин может оказывать благотворное воздействие на больных раком [28,62,63]. Амигдалин использовался для лечения рака как в виде монотерапии, так и в сочетании с метаболической терапией. Поэтому стоит отметить, что токсичность витаминных добавок не является редким явлением, и амигдалин рекомендуется пациентам в качестве пищевой добавки при раке, при этом предлагаются высокие дозы [71]. Таблетки и капсулы амигдалина в настоящее время продаются как натуральная пищевая добавка под неправильным названием лаэтрил или сомнительным названием «витамин B17» [72].

 

Некоторые исследования клинических случаев продемонстрировали рецидив метаболического ацидоза после массивной передозировки амигдалина и опасной для жизни токсичности цианидов, включая нефрогенный несахарный диабет [73–76]. Токсичность амигдалина может быть вызвана ядовитым составным продуктом бензальдегида и цианида после перорального приема [35]. Как токсикологи, так и нефрологи должны знать о способности этого «витамина» вызывать отравление цианидами [ 77]. Кроме того, в настоящее время существует серьезная обеспокоенность тем, что натуральные пищевые добавки не подвергаются строгим аналитическим и клиническим испытаниям. В соответствии с Регламентом Европейского Союза ((EC)

 


  • 178/2002), касающимся общего законодательства в области пищевых продуктов, пищевые добавки считаются пищевыми продуктами, а не лекарственными средствами [78]. Согласно приведенным выше данным, предполагающим, что клиническое использование пищевых добавок амигдалина может сопровождаться неблагоприятными побочными эффектами, соотношение риска и пользы не является благоприятным д Более того, амигдалин ошибочно называют витамином B17; соединение не является витамином [36].


  1. Дискуссия

 альтернативной медицине амигдалин уже несколько десятилетий считается противораковым средством без строгого научного подтверждения его эффективности и безопасности. Несколько тематических исследований выявили риск плохо регулируемых добавок [79]. Недавние исследования in vitro продемонстрировали, что амигдалин может оказывать противораковую активность, влияя на клеточный цикл, способствуя апоптозу и цитотоксичности, а также модулируя иммунный ответ [29,80,81].

 

Однако клинические исследования показали, что метаболиты амигдалина могут превращаться в синильную

 

кислоту и что накопление синильной кислоты с течением времени может привести к неблагоприятному токсическому эффекту у человека [82].

 

Более того, доступные в настоящее время исследования имеют некоторые ограничения. На сегодняшний день проведено лишь несколько исследований на животных in vivo . Кроме того, результаты исследований противоречивы, возможно, из-за неоднородности конструкции их методов. Доза, форма вещества, тип введения, отсутствие РКИ на людях, а также отсутствие клинических испытаний фазы III и IV являются существенными ограничениями для рекомендаций по назначению амигдалина для профилактики и/или лечения рака в клинической практике. Таким образом, преимуществом нашей обзорной статьи является выявление пробела в литературе относительно проведения клинических исследований амигдалина. С другой стороны, до сих пор недостаточно надежных данных о биодоступности амигдалина и соответствующих уровнях его концентрац

циркуляция. Соответственно, не существует данных о том, можно ли использовать амигдалин в качестве совместного лечения с другими химиотерапевтическими средствами.

 

Значительный научно-исследовательский разрыв между концом 20-го века и началом 21-го века возник из-за того, что до сих пор исследовательская деятельность проводилась ограниченно . Более того, большинство исследований, подтверждающих противораковое действие амигдалина, было проведено на различных линиях раковых клеток in vitro. Таким образом, разумно предположить, что его противораковые эффекты не могут быть экстраполированы на человека. Противоречивые результаты исследований in vitro и in vivo [41,51,60,83–86] и нескольких клинических исследований [61] еще раз подчеркивают необходимость дополнительных исследований

 

  • области терапии рака, особенно связанных с изучением новую, нетоксичную формулу амигдалина, принимая во внимание роль нанотехнологий в современную эпоху биомедицинской науки. В целом, существует большая потребность в дальнейших исследованиях на животных in vivo , а также клинических исследованиях на людях для изучения потенциальной эффективности профилактики и/или лечения амигдалина против развития и прогрессирования раковых заболеваний. Кроме того, расхождения, обнаруженные в некоторых клинических исследованиях, могут быть связаны с небольшими размерами выборки, а также с различными персонализированными характеристиками участников , что подчеркивает необходимость проведения хорошо спланированных клинических исследований с адекватными размерами выборки в будущем.


  • 2015 году Кокрановская база данных систематических обзоров заявила, что лаэтрил или амигдалин оказывают благоприятное воздействие на больных раком, что в настоящее время не подтверждается научно обоснованными клиническими данными [28]. В приведенном выше отчете документально подтверждено, что существует значительный риск серьезных побочных эффектов от отравления цианидом после введения лаэтрила или амигдалина, особенно после перорального приема



  • Таким образом, баланс риска и пользы лаэтрила или амигдалина для лечения рака остается однозначно сомнительным [28]. Однако с 2015 года было проведено много исследований. Более того, Национальный институт рака сообщил, что частота отравлений цианидами намного выше при пероральном приеме лаэтрила, поскольку кишечные бактерии и некоторые часто употребляемые в пищу растения содержат ферменты (бета-глюкозидазы), которые активируют высвобождение цианида после при


Наконец, эффективно применяя последние разработки в процессах разработки лекарств, амигдалин можно использовать в качестве ведущего соединения для синтеза и разработки более биологически активных аналогов, родственных амигдалину, с более высокой эффективностью и целевой селективностью, а также со сниженными нежелательными побочными эффектами и улучшенной биодоступностью при пероральном приеме. Например, в последние годы методы машинного обучения произвели революцию в области разработки лекарств на основе структуры [88].

 

Подходы искусственного интеллекта для ускорения и предотвращения сбоев в разработке лекарств также могут быть применены в случае амигдалина [89]. Помимо методов машинного обучения и искусственного интеллекта, квантовые вычисления являются еще одним значительным достижением

 


  • области технологий генеративной химии и процессов открытия лекарств, которые исследователи


 

могут использовать в случае амигдалина [90]. Функционализация на поздней стадии также создает новые проблемы для введения новых групп химических фрагментов, таких как амигдалин и его будущие потенциальные синтетические аналоги, ближе к концу синтетической последовательности, что означает, что новые молекулы, к которым можно быстро получить доступ без трудоемких химических процессов de novo. синтез [91]. Этот конкретный подход может предложить такие преимущества, как эффективный доступ к разнообразным библиотекам для изучения взаимосвязей структура-активность и улучшение физико-химических и фармакокинетических свойств [91].

 

Компьютерное открытие лекарств также может обеспечить быструю идентификацию весьма разнообразных, мощных, селективных по мишеням и подобных лекарству лигандов белков, открывая новые возможности для экономически эффективной разработки более безопасных и эффективных низкомолекулярных методов лечения, таких как амигдалин . 92]. Липофильность и биомиметические свойства также играют важную разную и перекрывающуюся роль в поддержке процесса открытия лекарств, главным образом за счет увеличения пероральной биодоступности потенциальных лекарств и значительного снижения их потенциальных неблагоприятных побочных эффектов [93,94]. Липофильность имеет уникальную ценность на ранних этапах разработки лекарств для скрининга библиотек и для первоначальной идентификации перспективных соединений, в то время как биомиметические свойства полезны для экспериментальной оценки свойств абсорбции, распределения, метаболизма и выведения (ADME) синтезированных новых соединений. поддержка определения приоритетности потенциальных лекарств и руководство дальнейшим синтезом; эти подходы могли бы


могут быть применены в случае амигдалина для получения новых синтетических аналогов амигдалина с повышенной пероральной биодоступностью и уменьшенными нежелательными побочными эффектами [93,94].


  • поддержку вышеизложенных соображений недавно были применены модели двойного докинга и молекулярной динамики для разработки новых подходов к объяснению влияния амигдалина на динамическое поведение комплекса Bcl-2/BAX, каспазы-3 и PARP- 1 . 95]. Эти молекулярные мишени могут играть определяющую роль в путях апоптоза и могут рассматриваться как потенциальные терапевтические мишени для лечения рака [95]. В целом, эти компьютерные наблюдения можно считать хорошим доказательством отказа от убеждения, что цианогруппа амигдалина, которая является основной группой, ответственной за противораковую активность амигдалина [95], может быть заменена другой химической группой с меньшими побочными эффектами. [96,97]. Кроме того, результаты вычислений подтвердили, что амигдалин имеет уникальную структуру и может считаться эталонным соединением для разработчиков лекарств


при разработке новых молекул со схожими эффективными противораковыми химическими структурами, но с меньшими неблагоприятными побочными эффектами [95–97].

 


  1. Выводы
  • настоящее время имеется несколько линий данных in vitro , свидетельствующих о том, что

амигдалин и его синтетический аналог лаэтрил обладают противораковыми свойствами, а предыдущие и предстоящие исследования на животных in vivo , по-видимому, подтверждают их противораковые свойства. Однако существуют определенные возникающие и серьезные проблемы, связанные с их токсичностью из-за их цианогруппы, а также из-за плохой биодоступности при пероральном приеме. В связи с этим необходимо эффективно применять новые технологии при разработке лекарств, чтобы свести к минимуму их неблагоприятные побочные эффекты, а также повысить их пероральную биодоступность. В связи с этим химики-медики должны сосредоточиться на лабораторном синтезе химических аналогов, которые могли бы поддерживать противораковую активность амигдалина, одновременно снижая его неблагоприятные побочные эффекты. Технология наночастиц кажется многообещающей для увеличения биодоступности и противораковой активности амигдалина при одновременном снижении его токсических эффектов. Однако в литературе существует значительный пробел, касающийся проведения клинических испытаний по изучению его противораковой активности на людях и обеспечению безопасности амигдалина до его внедрения в клиническую практику. Сочетание технологии наночастиц с использованием новых и более безопасных синтетических аналогов амигдалина.

Профилактическая роль амигдалина при плоскоклеточном раке Клеточная карцинома, индуцированная у хомяков



переведено с английского Said-lab.com


Доктор Амира Альнур, Int. Журнал фармацевтических наук и медицины (IJPSM),

 

выпуск 2. 10 октября 2017 г., с. 8-14

 

Профилактическая роль амигдалина при плоскоклеточном раке Клеточная карцинома, индуцированная у хомяков

Доктор Амира Альнур, доктор

 

философии. Преподаватель

 

патологии полости рта, ассистент кафедры патологии полости рта, Сирийский частный университет. Электронная почта: dr.amieranour@gmail.com, номер телефона: 00963988126576


Абстрактный:

 

Предыстория и цель исследования:

 

Плоскоклеточный рак полости рта (ПКРП) составляет 95% всех форм рака головы и шеи. В последние годы разработка противоопухолевых препаратов постепенно трансформировалась от цитотоксических препаратов к разработке новых таргетных препаратов с низкой токсичностью и высокой специфичностью. Амигдалин извлекается из косточек горького абрикоса и используется для лечения многих видов рака. Амигдалин считается натуральным продуктом, обладающим противоопухолевой активностью, меньшим количеством побочных эффектов и широко используемым. В этом исследовании мы исследуем профилактическую роль амигдалина при плоскоклеточном раке, индуцированном в буккальном мешке хомяков, путем обнаружения его корреляции с основными белками клеточного цикла и апоптоза (P53 и BCL2 соответственно).

 

Материалы и методы:

 

30 хомяков инкубировали и лечили амигдалином перорально, попеременно с канцерогенным агентом (ДМБА), в течение 3,5 месяцев. Затем хомяков умерщвляли, и мы готовили буккальный мешочек для традиционного и иммуногистохимического окрашивания, используя P53 и BCL2.

 

Полученные результаты:

 


Возникла карцинома с задержкой. В течение 3,5 мес наблюдался только вариант диспластических изменений. Кроме того, обнаружено снижение экспрессии маркеров клеточного цикла и апоптоза (P53 и BCL2) в образцах, обработанных амигдалином.

 

Заключение:

 

Амигдалин играет профилактическую роль в отношении плоскоклеточного рака полости рта, вызванного у хомяков. Он выполняет эту роль, контролируя основные белки, связанные с клеточным циклом и апоптозом (P53 и BCL2 соответственно).


Введение:

 

Злокачественные опухоли являются основным заболеванием, наносящим серьезный ущерб здоровью человека, и Всемирной организацией здравоохранения они были внесены в список серьезно угрожаемых здоровью человека. (1).

 

Поэтому лечение этой карциномы, как и других видов рака, с помощью таких традиционных методов лечения или дополнительных и альтернативных подходов, которые широко распространяются, представляет собой сложную задачу. (2)

(3) (4) (5).

 

Лаэтрил (амигдалин) также является важным примером альтернативной терапии рака и связан с цианогенными гликозидами, полученными из ядер различных фруктов (миндаля, абрикосов, персиков и т. д.). Это натуральный продукт, обладающий противоопухолевой активностью и меньшим количеством побочных эффектов. Это перспективный противоопухолевый препарат в сочетании с условно-хирургической терапией и химиотерапевтическими препаратами (6, 7).

 

Все больше данных подтверждают противораковое действие амигдалина и его избирательное убивающее действие на раковые клетки (8) (9) (10) (11).

 

Амигдалин также можно использовать для лечения рака и облегчения боли (8, 12, 13) (14) (15).

 

Материалы и методы:

 

 

Дизайн исследования:

 


  • этом исследовании приняли участие 30 золотых сирийских хомяков. Мы индуцировали SCC в буккальном мешочке три дня в неделю, взаимозаменяемо с пероральным приемом амигдалина (200 мг). Это исследование длилось 3,5 месяца — время, необходимое для индукции плоскоклеточного рака в буккальном мешке. Всех хомяков забили через 3,5 месяца. Для гистопатологического исследования мы подготовили традиционные и иммуногистохимические красители.


 

 

Экспериментальное исследование проводилось в инкубаторах для животных фармацевтического факультета Дамасского университета. Подготовка образцов и методы окрашивания проводились в лаборатории патологии полости рта стоматологического факультета Дамасского университета.

 

Расчет размера выборки:

 


  • соответствии с текущими требованиями исследования был предложен минимальный размер выборки в 30 хомяков, демонстрирующий 2,5-кратное увеличение. Этот расчет установил мощность теста на уровне 80% и уровень значимости на уровне 5%.


 

Материалы:

 

Амигдалин: амигдалин от компании «Терезия» применялся перорально в концентрации, достигающей 200 мг/кг.

 

 

Канцерогенный агент: мы использовали ДМБА, полициклический ароматический углеводородный канцероген, наносили его на слизистую оболочку щечной сумки молотков с помощью малярной кисти в течение трех с половиной месяцев.

Окрашивание: Мы использовали традиционные атласы (гематоксилин и эозин). В дополнение к иммуногистохимическим окраскам; P53 и BCL2 от американской компании Bio-SB.

 

Методы:

 

ДМБА наносили на левый щечный мешочек хомяка с помощью малярной кисти в течение трех с половиной месяцев.

 

Это предлагаемый период времени для индукции плоскоклеточного рака в рамках этого метода.

 

 

Амигдалин был приготовлен для перорального применения в дозе 200 мг/кг.

 

Хомяков забивали всех вместе через 3,5 месяца.

 

Образцы готовили для традиционного и иммуногистохимического окрашивания.

 

Классификация повреждений эпителия была разделена на 7 категорий: нормальный эпителий (значение 0), гиперплазия (значение 1), гиперплазия и дисплазия (значение 2), легкая дисплазия (значение 3), умеренная дисплазия (значение 4) и тяжелая дисплазия (значение 4). значение 5)

 

 

Статистика:

 

Мы использовали Т-тест Стьюдента для двух отдельных групп, чтобы сравнить экспрессию P53 и BCL2 в разные периоды времени применения препарата, и тест хи-квадрат, чтобы сравнить разницу между частотами положительной экспрессии иммуногистохимических окрасок и между частотами нормальных образцов легких и воспаленных.

 

 

Полученные результаты:

 

 


  • некоторых образцах эпителия буккального мешка выявлены гиперпластические и диспластические изменения (24 случая), тогда как в других образцах (6 случаев) выявлена норма.


 

Влияние амигдалина на частоту изменений внутри эпителия. Для изучения достоверности различий

 

между частотами нормального эпителия и диспластического эпителия мы использовали критерий хи-квадрат (таблица 1).

 

 

Как показано в таблице 1, наблюдались достоверные изменения между частотами нормальных эпителиальный и диспластический (Р=0,005).

Результаты экспрессии иммуногистохимических окрасок: (таблица 2)

 

Влияние амигдалина на частоту иммуногистохимических окрасок:

 

Мы использовали критерий хи-квадрат для изучения значимости различий между частотами экспрессия иммуногистохимических окрасок: (таблица 3)


Никакой значимости между частотой отрицательных и положительных образцов для BCL2 ( P

 

= 0,796) и для P53 (P = 0,439).

 

Мы использовали Т-тест Стьюдента для изучения значимости различий между (0) и значениями экспрессии BCL2 и P53. (таблица 4)

 


  • этой таблице показаны различия значимости, которые были продемонстрированы между стандартным значением


 


  • и средними значениями положительных экспрессий в отношении двух исследованных белков (BCL2 и P53) при уровне достоверности 95 процентов (значение P <0,05). Положительный знак разницы указывает на то, что значения экспрессии белков были выше стандартного значения (0) в группе, получавшей амигдалин.


 

 

Обсуждение:

 


  • этом исследовании мы обнаружили роль амигдалина, экстрагированного из косточек абрикоса, в качестве профилактического препарата плоскоклеточного рака, индуцированного в буккальном мешке хомяков. Амигдалин состоит из двух молекул глюкозы, одной единицы бензальдегида и синильной кислоты (HCN). Бензальдегид и синильная кислота обладают противоопухолевыми свойствами. Амигдалин использовался для лечения различных типов рака (9-11, 16-20).


 


  • этом исследовании амигдалин, который применялся перорально в дозе 200 мг/кг в течение 3,5 месяцев, значительно подавлял начало развития плоскоклеточного рака у хомяков (15, 21, 22).


 

Изучая обзоры литературы, мы не обнаружили предыдущих исследований о профилактической роли амигдалина при плоскоклеточном раке или других видах рака.

 

Новые исследования подтвердили роль этого препарата в лечении различных видов рака человека. Его роль была связана с понижением регулируемого эффекта таких белков, как BCL2 (апоптозный белок) и повышением экспрессии BAX (антиапоптический белок). (6, 9, 11, 18, 20, 22-25).

 

Заключение:

 

Что касается злокачественных опухолей и их лечения, исследования сегодня направлены на таргетную терапию, а не на традиционные методы лечения. Дополнительные исследования и исследования должны принять во внимание эту точку зрения. Кроме того, более важно иметь возможность предотвращать возникновение подобных заболеваний среди лиц, имеющих склонность к развитию таких злокачественных новообразований.

 

В заключение следует отметить, что Амигдлайн заслуживает дальнейшей оценки своей профилактической роли.


 

Использованная литература:

 


  1. Ллевеллин К.Д., Джонсон Н.В., Варнакуласурия К.А. Факторы риска плоскоклеточного рака полости рта у молодых


 

людей: комплексный обзор литературы. Оральная онкология. [Исследовательская поддержка, за пределами США

 

Правительственный обзор]. Июль 2001 г.;37(5):401-18.

2.Асили С., Фатхи Казеруни А., Агагазвини Л., Салигх Рад Х.Р., Пираеш Исламиан Дж. Магнитно-резонансная томография


  • динамическим контрастом (DCE-MRI) и диффузионно-взвешенная магнитно-резонансная томография (DWI) для дифференциации доброкачественных и злокачественных опухолей слюнных желез. Журнал биомедицинской физики и инженерии. Декабрь


2015 г.;5(4):157-68.

Чанг Х.К., Ли Дж.В., Ким Ю.С., Ким Х., Ли М.Х. и др. Амигдалин подавляет 3. индуцированную липополисахаридом экспрессию

 

циклооксигеназы-2 и индуцибельной синтазы оксида азота в клетках микроглии мыши BV2. Нейрол Рез. [Поддержка сравнительных

 

исследований, правительство за пределами США]. 2007;29

 

Приложение 1:S59-64.

 

Боларинва И.Ф., Орфила С., Морган М.Р. Разработка и применение 4. иммуноферментного анализа (ИФА) для количественного определения амигдалина, цианогенного гликозида, в пищевых продуктах. J Agric Food Chem. 9 июля 2014 г.;62(27):6299-305.

 

Боларинва И.Ф., Орфила С., Морган М.Р. Содержание амигдалина в семенах, ядрах и пищевых продуктах 5.

 

коммерчески доступен в Великобритании. Пищевая хим. 2014;152:133-9.


  1. Сонг З, Сюй С. Расширенные исследования противоопухолевого действия амигдалина. J Рак Res Ther. [Исследовать


 

Поддержка, Обзор правительства за

 

пределами США]. 10 августа 2014 г. Приложение 1:3–7.

 

Корман ДБ. Альтернативные средства лекарственной терапии рака: летрил. Вопр Онкол. [Обзор]. 7. 2012;58(5):698-704. 8.

 

Чанг Х.К., Шин М.С., Ян ХИ, Ли Дж.В., Ким Ю.С., Ли М.Х. и др. Амигдалин индуцирует апоптоз посредством регуляции экспрессии Bax и Bcl-2 в клетках рака простаты человека DU145 и LNCaP. Биол Фарм Булл. [Исследовательская поддержка, правительство за пределами США]. 2006 августа;29(8):1597-602.

 

Ли Х.М., Мун А. Амигдалин регулирует апоптоз и адгезию в тройной негативной молочной железе Hs578T 9.

 

Раковые клетки. Биомол Тер (Сеул). Январь 2016 г.;24(1):62-6.

 


  1. Макаревич Дж., Рутц Дж., Юнгель Э., Каульфус С., Цаур И., Нельсон К. и др. Амигдалин влияет на адгезию и инвазию клеток рака мочевого пузыря in vitro. ПлоС один. [Исследовательская поддержка, правительство за пределами США]. 2014;9(10):e110244.


 


  1. Чен Ю, Ма Дж, Ван Ф, Ху Дж, Цуй А, Вэй С и др. Амигдалин индуцирует апоптоз в клетках линии клеток рака шейки матки человека HeLa. Иммунофармакол Иммунотоксикол. [Исследовательская поддержка, правительство за пределами США]. Февраль 2013


 

г.;35(1):43–51.

 


  1. Здроевич З., Отлевска А., Хакемер П. [Амигдалин - структура и клиническое значение]. Пол


 

Меркур Лекарски. Май 2015 г.;38(227):300-3.

 

Ли Х., Накашима Т., Танака Т., Чжан Ю.Дж., Ян С.Р., Куно И. Два новых мальтольных гликозида и 13 цианогенных гликозидов из Elsholtzia Rugulosa Hemsl. J Nat Med. Январь 2008 г.;62(1):75-8.

 


  1. Боларинва И.Ф., Орфила С., Морган М.Р. Определение амигдалина в семенах яблок, свежих яблоках и переработанных яблочных соках. Пищевая хим. 1 марта 2015 г.; 170: 437-42.


Бромли Дж., Хьюз Б.Г., Леонг Д.К., Бакли Н.А. Опасное для жизни взаимодействие между 15. дополнительными лекарствами: токсичность цианидов после приема амигдалина и витамина С. Анналы фармакотерапии. Сентябрь 2005 г.; 39 (9): 1566-9.

 


  1. Ли Н, Чен X, Ляо Дж, Ян Г, Ван С, Джозефсон Ю и др. Ингибирование 7,12-


 

диметилбенз[а]антрацен (ДМБА)-индуцированный оральный канцерогенез у хомяков чаем и куркумином.

 

Канцерогенез. [Исследовательская поддержка, правительство США, PHS]. 2002 августа;23(8):1307-13.

 


  1. Ха У.С., Бэ В.Дж., Ким С.Дж., Юн Б.И., Хон Ш., Ли Дж.И. и др. Антоцианин индуцирует апоптоз клеток DU-145 in vitro и ингибирует


 

рост ксенотрансплантата рака простаты. Медицинский журнал Йонсей. [Исследовательская поддержка, правительство за пределами США]. Январь 2015 г.;56(1):16–23.

Пак Х.Дж., Юн С.Х., Хан Л.С., Чжэн Л.Т., Юнг К.Х., Ум Ю.К. и др. Амигдалин ингибирует гены, связанные с клеточным

 

циклом в клетках рака толстой кишки человека SNU-C4. Мир Дж Гастроэнтерол. [Исследовательская поддержка, правительство за пределами США].

 


  • сентября 2005 г.; 11 (33):


 

Цянь Л., Се Б., Ван Й., Цянь Дж. Опосредованное амигдалином ингибирование клеток немелкоклеточного рака легких 5156-61. 19. Инвазия in vitro. Международный журнал клинической и экспериментальной патологии. 2015;8(5):5363-70.


  1. Юнгель Э., Томас А., Рутц Дж., Макаревич Дж., Цаур И., Нельсон К. и др. Амигдалин подавляет рост


 

клеток почечно-клеточного рака in vitro. Int J Mol Med. Февраль 2016 г.;37(2):526-32.


  1. Адевуси С.Р., Оке О.Л. О метаболизме амигдалина. 1. ЛД50 и биохимические изменения у крыс. Канадский журнал физиологии


 


  • фармакологии. Сентябрь 1985 г.;63(9):1080-3.


 


  1. Чанг Л.В., Чжу Х.П., Ли В.Б., Лю ХК, Чжан QS, Чэнь Х.Б. Защитное действие амигдалина на альвеолярные эпителиальные клетки II типа, подвергнутые гипероксии, выделенные из легких недоношенных крыс in vitro. Чжунхуа эр ке за чжи Китайский педиатрический журнал. [Исследовательская поддержка, правительство за пределами США]. 2005 февраль;43(2):118-23. 23.


 

Хён-Гён ЧАН М-СС, Хе-и др. Амигдалин индуцирует апоптоз посредством регуляции Bax Экспрессия Bcl-2 в клетках рака простаты человека DU145 и LNCaP. Биол Фарм. 2006.



Эффект амигдалина при лечении плоскоклеточного рака индуцированный в буккальном мешке золотого сирийского хомяка

Журнал стоматологических и медицинских наук IOSR (IOSR-JDMS)

 

электронный ISSN: 2279-0853, p-ISSN: 2279-0861. Том 15, выпуск 2, версия. IX (февраль 2016 г.), стр. 75–79, www.iosrjournals.org.

 

Эффект амигдалина при лечении плоскоклеточного рака

индуцированный в буккальном мешке золотого сирийского хомяка

 

 

Амира Нур, доктор медицинских наук, магистр наук

1 Базель Азар, доктор медицинских наук, магистр наук

2 Анас Рабата, доктор медицинских наук, магистр наук

3 Проф.Ахмад Манадили, доктор медицинских наук, магистр, доктор философии

Кафедра патологии полости рта Дамасского университета

1Кафедра челюстно-лицевой хирургии Дамасского университета

Институт стоматологии и стоматологии Университета Палацкого

Кафедра патологии полости рта Дамасского университета

Кафедра оральной гистологии Масариковского университета

Кафедра патологии полости рта Дамасского университета



В последнее время научные исследования сосредоточились на альтернативной и комплементарной медицине как широко распространенном методе лечения многих заболеваний, включая рак. Рак, который считается опасным для жизни заболеванием, поражает пациентов во всем мире. Традиционная медицина до сих пор не обеспечивает пациентам окончательного и абсолютного решения их страданий, особенно в терминальных случаях рака. Многие люди используют альтернативные и естественные методы, чтобы максимально уменьшить боль и побочные эффекты этой ужасной болезни. Амигдалин, извлеченный из семян абрикоса и миндаля, обсуждается как настоящее лекарство от рака и многих других заболеваний. Поэтому с помощью этого исследования мы хотели оценить эффективность амигдалина в лечении плоскоклеточного рака, наиболее распространенной карциномы полости рта, индуцированной у сирийского хомяка, и определить, каким образом это вещество останавливает раковые клетки.

 

Материалы и методы:20 хомяков были разделены на две группы: группу больных (10 хомяков), которую лечили амигдалином, и контрольную группу (10 хомяков), которая не получала никакого лечения. Использованный канцерогенный материал представлял собой (DMPA), а иммуногистохимические пятна - P53 и Ki67.

 

Результаты и выводы:Существует значительная статистическая разница между двумя группами как для P53, так и для Ki67. В заключение отметим, что амигдалин оказывает терапевтический эффект при лечении плоскоклеточного рака, индуцируя апоптоз раковых клеток.

 

Ключевые слова:Плоскоклеточный рак, Амигдалин, альтернативная терапия, сирийский хомяк, клеточный цикл, P53, Ki67.


Введение:

 

Злокачественные опухоли являются основными заболеваниями, наносящими серьезный вред здоровью человека.

 

Всемирная организация здравоохранения (ВОЗ) включила его в список основных заболеваний, представляющих серьезную угрозу здоровью человека.

 

Плоскоклеточный рак полости рта (OSCC) составляет 95% всех форм рака головы и шеи и более.

 

за последнее десятилетие его заболеваемость возросла на 50%. Канцерогенез полости рта представляет собой многостадийный процесс, который одновременно включает предраковые поражения, инвазию и метастазирование. Деградация клеточного цикла и пролиферация злокачественных клеток приводит к утрате механизмов контроля, обеспечивающих нормальную функцию тканей (1).

 

Плоскоклеточная карцинома головы и шеи (SCCHN) возникает в результате множественных молекулярных событий, вызванных воздействием различных привычек, таких как табакокурение и употребление алкогольных напитков, под влиянием факторов окружающей среды, возможно, в некоторых случаях вирусов, на фоне наследственной резистентности или восприимчивости. Плоскоклеточный рак полости рта имеет аналогичную этиологию. Генетические повреждения затрагивают многие хромосомы и гены, включая онкогены и гены-супрессоры опухолей, и именно накопление таких генетических повреждений, возможно, наряду с нарушением способности восстанавливать эти повреждения (в некоторых случаях это наследственный признак), по-видимому, приводит к карциноме у в некоторых случаях, иногда через клинически очевидное предраковое или потенциально злокачественное поражение. В этом сообщении рассматриваются достижения в понимании этой сложной и быстро развивающейся области исследований за последнее десятилетие (2).

 

Плоскоклеточный рак полости рта (ПКР) считается первично локализованным заболеванием, отдаленные метастазы встречаются нечасто. В литературе сообщается о растущем количестве сообщений о случаях, связанных с необычными участками отдаленных метастазов карциномы полости рта. Вероятно, это связано с улучшением контроля над раком в первичном очаге, что увеличивает вероятность развития отсроченного метастазирования. В одной статье представлен случай 58-летней женщины, которая отказалась от хирургического лечения по поводу очень агрессивного ПКР альвеолярного гребня нижней челюсти. Опухоль не ответила на химиотерапию или лучевую терапию, и у пациента появились метастазы в черепные кости примерно через 1 год после первоначального диагноза. Расположение первичной опухоли (рядом с костью), а также отказ пациента от предложенного лечения могли привести к гематологическому распространению злокачественных клеток, что привело к отдаленному метастазированию (3).

 


  • настоящее время многие исследования показывают, что 4-6% случаев рака полости рта возникают в возрасте моложе 40 лет. При изучении факторов риска в этой возрастной группе было отмечено, что они не связаны с курением или употреблением алкоголя, которые составляют основные факторы риска в старших возрастных группах. Предполагается, что предрасположенность к генетической


нестабильности является вероятной причиной (4).

 

Плоскоклеточный рак головы и шеи (HNSCC) — заболевание людей среднего и пожилого возраста. Однако в последнее время сообщалось о повышении заболеваемости HNSCC у молодых людей в возрасте до 45 лет. В нашем поиске литературы мы сосредоточились на эпидемиологии и этиологии HNSCC у взрослых в возрасте до 45 лет.

 

HNSCC у молодых людей связан с более высоким уровнем заболеваемости среди некурящих, более низким соотношением женщин и мужчин, более высоким процентом опухолей полости рта и ротоглотки и меньшим количеством вторичных первичных опухолей. Однако, помимо традиционных факторов риска, связанных с употреблением табака и алкоголя, причины возникновения этих видов рака у молодых людей остаются неясными. Агенты, которые могут способствовать риску, включают инфекцию подтипами вируса папилломы человека высокого риска, а также генетические факторы или статус иммунодефицита. Ожидаемый рост заболеваемости и смертности среди молодых людей с HNSCC может стать серьезной проблемой общественного здравоохранения, если текущие тенденции сохранятся, особенно образ жизни, который может способствовать развитию этого заболевания (5).

 

Исследование вируса папилломы человека и его экспрессии в нормальной слизистой оболочке полости рта и некоторых заболеваниях полости рта показало, что вирус папилломы человека все чаще выявляется в нормальной слизистой оболочке полости рта, доброкачественной лейкоплакии, интраэпителиальной неоплазии, плоскоклеточной карциноме и бородавчатой карциноме. Он выявлялся при плоскоклеточном раке полости рта значительно чаще в исследованиях, в которых использовался анализ с высокой чувствительностью (полимеразная цепная реакция), чем в исследованиях, в которых использовались анализы с умеренной чувствительностью (например, Саузерн-блот-гибридизация) и анализы с низкой чувствительностью (например, иммуногистохимия, гибридизация in situ). ). ДНК вируса папилломы человека значительно чаще обнаруживалась в замороженной плоскоклеточной карциноме полости рта, чем в ткани, залитой в парафин. В исследованиях, в которых анализировалось использование химических кофакторов, употребление табака и алкоголя чаще ассоциировалось с плоскоклеточным раком полости рта, чем с наличием вируса папилломы человека. Однако разница не была существенной. Генотипы вируса папилломы человека высокого риска имеют значительную связь с плоскоклеточным раком полости рта (6).

 

Мутация, дезактивация и нарушение регуляции экспрессии онкогенов и генов-супрессоров опухолей могут быть участвует в патогенезе плоскоклеточного рака полости рта (SCC). Деактивация гена-супрессора опухолей р53 обеспечивает пролиферацию клеток и блокирует апоптоз злокачественных кератиноцитов полости рта. Мутация онкогена ras приводит к постоянной митогенной передаче сигналов. Повышенная экспрессия c-Myc в присутствии факторов роста обеспечивает дополнительный пролиферативный сигнал. Утрата функции гена-супрессора опухолей ретинобластомы (Rb) может способствовать гиперпролиферации кератиноцитов полости рта, и недавние данные свидетельствуют о том, что для опухолевого процесса необходима одновременная деактивация как р53, так и Rb. Повышенная экспрессия Bcl-2 и пониженная экспрессия Fas ингибируют апоптоз опухолевых клеток и могут вызывать устойчивость к цитотоксическим препаратам и Т-клеточную цитотоксичность соответственно. Экзогенные мутагены, такие как табак, алкоголь и вирусные онкогены, могут вызывать изменение экспрессии онкогенов и генов-супрессоров опухолей в некоторых случаях плоскоклеточного рака полости рта. Подчеркивается влияние этих механизмов на будущие методы лечения плоскоклеточного рака полости рта (7).

 


  • последние годы разработка противоопухолевых препаратов постепенно трансформировалась от цитотоксических препаратов к повышению селективности препаратов, преодолению множественной лекарственной устойчивости, разработке новых препаратов с низкой токсичностью и высокой специфичностью.


Амигдалин еще называют горьким абрикосом, лаэтрилом, миндалем. Это цианогенное соединение, принадлежащее к

 

группа ароматических цианогенных гликозидов. Его молекулярная формула: C.20ЧАС27НЕТ11, молекулярная масса 457,42.

 

Химическая структура: D-манделонитрил-β-D-глюкозид-6-β-глюкозид. Амигдалин широко распространен в растениях, особенно в семенах розоцветных растений, например, абрикоса, персика, вишни, сливы и др. (8, 9).

 

Сам по себе амигдалин нетоксичен, но при разложении некоторыми ферментами образует HCN, который является

 

ядовитое вещество (9). Многочисленные исследования подтвердили, что амигдалин оказывает противокашлевое и противоастматическое действие, а также влияет на пищеварительную систему. Кроме того, фармакологические эффекты также включают антиатерогенное действие, ингибирование интерстициального фиброза почек, предотвращение легочного фиброза, устойчивость к повреждению легких, вызванному гипероксией, иммуносупрессию, иммунную регуляцию, противоопухолевое, противовоспалительное и противоязвенное действие (10) (11) (12) (13)

 

Его использовали для лечения астмы, бронхита, эмфиземы, проказы, колоректального рака и витилиго (11). Амигдалин разлагался до синильной кислоты, которая является противоопухолевым соединением, и бензальдегида, который может вызывать обезболивающее действие, поэтому его можно использовать используется для лечения рака и облегчения боли (14).

 

Ученые указывают на использование амигдалина при лечении рака. Новое исследование изучило корреляцию между амигдалином и раком простаты. Было показано, что амигдалин индуцирует апоптотическую гибель клеток у клетки рака предстательной железы человека DU145 и LNCaP путем активации каспазы-3 посредством подавления Bcl-2, антиапоптотического белка, и повышения регуляции Bax, проапоптотического белка (14).

 

Другое исследование изучало, как амигдалин может индуцировать апоптоз в клетках линии клеток рака шейки матки человека HeLa. В клетках HeLa, обработанных амигдалином, развивались типичные апоптотические изменения. Развитие апоптоза в клетках, обработанных амигдалином, было подтверждено двойным окрашиванием обработанных амигдалином клеток аннексином V-FITC и йодидом пропидия (PI) наряду с увеличением активности каспазы-3 в этих клетках (15).

 

Эффект амигдалина изучался при заболеваниях, отличных от рака, таких как легочный фиброз. В исследовании на крысах экспериментальные группы получали внутрибрюшинное введение амигдалина (15 мг/кг/день). Крыс забивали через 7, 14 и 28 дней после введения блеомицина. Амигдалин может снижать интенсивность пиков дифференциально экспрессируемых белков в сыворотке крыс (10).

 

Амигдалин эффективен для облегчения воспалительной боли и, следовательно, может использоваться в качестве анальгетика с противовоспалительными средствами.

 

ноцицептивное и противовоспалительное действие. Проведено исследование антиноцицептивного действия амигдалина, выделенного из Prunus Armeniaca, на крысах. Внутримышечное введение амигдалина достоверно уменьшало вызванную формалином тоническую боль как на ранней (первые 10 мин после инъекции формалина), так и на поздней фазе (10–30 мин после первичной инъекции формалина). На поздней стадии амигдалин уменьшал боль, вызванную формалином, дозозависимым образом в диапазоне доз менее 1 мг/кг (16).

 

  • исследовании in vitro оценивалась противовоспалительная и обезболивающая активность амигдалина. клеточная линия, индуцированная липополисахаридом (ЛПС), и модель крысы с артритом голеностопного сустава, индуцированным каррагинаном. Амигдалин значительно ингибировал экспрессию мРНК TNF-альфа и IL-1beta в обработанных LPS клетках RAW 264.7. Амигдалин (0,005, 0,05 и 0,1 мг/кг) вводили внутримышечно сразу после индукции каррагинан-индуцированной артритной боли у крыс, а антиартритный эффект амигдалина оценивали путем измерения соотношения весового распределения несущих сил обоих стопы и окружность лодыжки, а также путем анализа уровней экспрессии трех молекулярных маркеров боли и воспаления (c-Fos, TNF-альфа и IL-1бета) в спинном мозге. Гипералгезия пораженной артритом лодыжки наиболее значительно облегчалась при инъекции 0,005 мг/кг амигдалина. При этой дозировке экспрессия c-Fos, TNF-альфа и IL-1бета в спинном мозге значительно подавлялась. Однако при дозировке более 0,005 мг/кг обезболивающего эффекта амигдалина не наблюдалось. Таким образом, лечение амигдалином эффективно облегчало реакцию на лечение ЛПС в клетках RAW 264.7 и каррагинан-индуцированный артрит у крыс и может служить анальгетиком для облегчения воспалительной боли (17).


 

Исследование in vitro изучило влияние амигдалина на рост клеток рака мочевого пузыря.

 

линии (UMUC-3, RT112 и TCCSUP). Исследовали рост опухоли, пролиферацию, клональный рост и прогрессирование клеточного цикла. Изученными белками, регулирующими клеточный цикл, были cdk1, cdk2, cdk4, циклин A, циклин B, циклин D1, p19, p27. Амигдалин в зависимости от дозы уменьшал рост и пролиферацию во всех трех клеточных линиях рака мочевого пузыря, что отражалось в значительной задержке прогрессирования клеточного цикла и остановке G0/G1. Таким образом, амигдалин может блокировать рост опухоли путем понижающей модуляции cdk2 и циклина А (18).

 

В другом исследовании сто семьдесят восемь пациентов с раком получали амигдалин плюс

 

Программа «метаболической терапии», состоящая из диеты, ферментов и витаминов. Подавляющее большинство этих пациентов до лечения находились в хорошем общем состоянии. Одна треть ранее не получала химиотерапию. Никакой существенной пользы с точки зрения излечения, улучшения или стабилизации рака, улучшения симптомов, связанных с раком, или увеличения продолжительности жизни не наблюдалось. В этом исследовании рекомендуется, чтобы пациенты, подвергшиеся воздействию этого агента, были проинструктированы об опасности отравления цианидами, а уровень цианида в их крови должен тщательно контролироваться, поскольку амигдалин является токсичным препаратом, который неэффективен при лечении рака (19).

Новое исследование показало, что амигдалин ингибирует гены, связанные с клеточным циклом в клетках рака толстой кишки человека SNU-C4. Микрочип показал, что амигдалин подавляет активность, особенно генов, принадлежащих к категории клеточного цикла. Анализ ПЦР в реальном времени (ОТ-ПЦР) показал, что уровни мРНК этих генов также снижались при лечении амигдалином в клетках рака толстой кишки человека SNU-C4. Таким образом, это позволяет предположить, что амигдалин оказывает противораковое действие посредством понижающей регуляции генов, связанных с клеточным циклом, в клетках рака толстой кишки человека и может использоваться в качестве терапевтического противоракового препарата (20).

Новое передовое исследование противоопухолевого эффекта амигдалина показало, что амигдалин является естественным

 

продукт, обладающий противоопухолевой активностью, меньшим количеством побочных эффектов, широкодоступный и относительно недорогой. Все эти особенности делают амигдалин многообещающим противоопухолевым препаратом в сочетании с препаратами условной химиотерапии, которые могут оказывать синергический эффект, что дает новые идеи для разработки новых противораковых препаратов (9).

 


  1. Материалы и методы:


 

Образец исследования:в него вошли 10 золотистых сирийских хомяков, которые были разделены на две группы: группу случаев, в которой рак был вызван в буккальном мешке, а в качестве лечения применялся амигдалин. Вторая была контрольной группой, в которой был вызван рак, но лечение не проводилось.


Амигдалин: Препарат был извлечен в лаборатории химического коллажа Дамасского университета из косточек горького абрикоса, затем полученный порошок растворяли в дистиллированной воде и готовили для инъекции в брюшину.

 

Канцерогенный агент: это ДМБА, полициклический ароматический углеводородный канцероген, который наносили на слизистую оболочку щечной сумки хомяков с помощью малярной кисти.

 

шрамирование: хомячков второй группы умерщвляли через 14 недель, предполагаемый период, в течение которого индуцируется рак в буккальном мешке. В то время как хомяки в основной группе начали получать амигдалин, инъецированный в брюшину, через 14 недель после того, как в их сумке были обнаружены язвы карциномы. Оно длилось 21 день — рекомендуемый период в различных исследованиях.

 

Образец окрашивания: Образцы были получены и окрашены традиционными красителями (гематоксилином и эозином), затем

 

были окрашены двумя иммуногистохимическими красителями: P53 и Ki67.

 

Статистика:

 

Т-тест Стьюдента использовался для двух отдельных групп, чтобы сравнить экспрессию P53 и Ki67 между группой, принимавшей витамин, и группой больных раком.





  1. Обсуждение:


 

Предполагается, что амигдалин, как дополнительное и натуральное вещество, является терапевтическим средством при многих заболеваниях. Было проведено множество исследований с целью повышения его эффективности при лечении воспалительных заболеваний, а также различных видов рака. Тем не менее, он по-прежнему является потенциально ядовитым материалом из-за выброса цианида в результате его разложения. Кроме того, в литературе недостаточно доказанных данных, чтобы заявить о самом абсолютном механизме действия этого вещества внутри раковых клеток.

 

Мы провели это исследование, индуцируя плоскоклеточную карциному, как наиболее распространенную карциному ротовой полости, в буккальном мешке золотого сирийского хомячка, используя ДМБА в качестве канцерогенного агента. Затем индуцированный рак лечили инъекцией амигдалина в брюшину.

Амигдалин состоит из двух молекул глюкозы, одной из которых является бензальдегид, который является болеутоляющим средством.

 


  • одна синильная кислота, которая считается противоопухолевым соединением.


 


  • настоящем исследовании противоопухолевые эффекты амигдалина были изучены путем обнаружения митотического


 

индекс и путь P53 после лечения индуцированной карциномы, сравнивая результаты с результатами контрольной группы.

Ki67 был почти отрицательным у хомяков, получавших амигдалин, тогда как в группе больных раком он был повышен.

 

P53 также был отрицательным в группе лечения по сравнению с его высоким значением в группе рака.

 


  • литературе нет статей, в которых упоминался бы митотический индекс при изучении влияния


 

амигдалин, ни путь P53 не изучались.

 

Клетки рака простаты, обработанные амигдалином, демонстрировали несколько морфологических характеристик.

 

апоптоз. Исследование показало, что амигдалин увеличивает экспрессию Bax, проапоптотического белка, снижает экспрессию Bcl-2, антиапоптотического белка, и увеличивает активность фермента каспазы-3 в клетках рака простаты

(14).

Тот же путь белков BAX был изучен в клетках рака шейки матки (клетки HeLa), показав

 

что в клетках HeLa, обработанных амигдалином, развивались типичные апоптотические изменения. (15)

 

Другое исследование объяснило влияние амигдалина на блокирование рака мочевого пузыря за счет уменьшения циклина А и циклин-зависимой киназы (cdk2), белков, регулирующих клеточный цикл в раковых клетках.

 


  1. Заключение:


 


  • заключение мы обнаружили, что амигдалин индуцирует апоптоз в клетках, подавляя экспрессию P53. Кроме того, амигдалин снижает уровень митотического индекса (Ki67) в этих клетках.


 

Благодарности:

 

Это исследование было поддержано грантом Дамасского университета, факультета стоматологии, кафедры патологии полости рта.

 

Рекомендации

 


  • Ривера С., Венегас Б. Гистологические и молекулярные аспекты плоскоклеточного рака полости рта (обзор). Письма об онкологии. 2014;8(1):7-11. Электронная публикация


 

25.06.2014.

 


  • Скалли С., Филд Дж. Генетические аберрации при плоскоклеточном раке головы и шеи (SCCHN) в отношении рака полости рта (обзор). Международный журнал онкологии. 1997;10(1):5-21. Электронная публикация 1 января 1997 г.


 


  • Такахама А.-младший, Корреа М.Б., де Алмейда О.П., Лопес М.А. Плоскоклеточный рак полости рта, метастазирующий в кость черепа: описание случая и обзор литературы. Общая стоматология. 2014;62(2):59-61. Электронная публикация 07.03.2014.


 


  • Ллевеллин К.Д., Джонсон Н.В., Варнакуласурия К.А. Факторы риска плоскоклеточного рака полости рта у молодых людей: комплексный обзор литературы. Оральная онкология. 2001;37(5):401-18. Электронная публикация 30 мая 2001 г.


 


  • Майхжак Е., Шибяк Б., Вегнер А., Пиенковски П., Паздровски Дж., Лучевски Л. и др. Плоскоклеточный рак полости рта и ротоглотки у молодых людей: обзор литературы. Радиология и онкология. 2014;48(1):1-10. Электронная публикация 4 марта 2014 г.


 


  • Миллер К.С., Уайт ДК. Экспрессия вируса папилломы человека в слизистой оболочке полости рта, предраковых состояниях и плоскоклеточном раке: ретроспективный обзор литературы. Хирургия полости рта, оральная медицина, патология полости рта, радиология полости рта и эндодонтия. 1996;82(1):57-68. Электронная публикация, 1 июля 1996 г.


 


  • Шугерман П.Б., Джозеф Б.К., Сэвидж Н.В. Обзорная статья: Роль онкогенов, генов-супрессоров опухолей и факторов роста при плоскоклеточном раке


 

полости рта: случай апоптоза и пролиферации. Заболевания полости рта. 1995;1(3):172-88. Электронная публикация 1 сентября 1995 г.

 


  • Хольцбехер, доктор медицинских наук, Мосс М.А., Элленбергер Х.А. Содержание цианидов в препаратах лаэтрила, семенах абрикоса, персика и яблока. Журнал токсикологии Клиническая токсикология. 1984;22(4):341-7. Электронная публикация 1 января 1984 г.


 


  • Сонг З, Сюй С. Расширенные исследования противоопухолевого действия амигдалина. Журнал исследований и терапии рака. 2014;10 Приложение 1:3-7. Электронная публикация 11 сентября 2014 г.


 


  • Ду Х.К., Сун ФК, Чжоу Х, Ли Х, Чжан Дж.П. Влияние амигдалина на белковый биомаркер сыворотки при фиброзе легких у крыс, индуцированных блеомицином. Чжунхуа лао донг вэй шэн чжи йе бин за чжи = Чжунхуа лаодун вэйшэн чжиебинг зажи = Китайский журнал промышленной гигиены и профессиональных заболеваний. 2010;28(4):260-3. Электронная публикация 15 мая 2010 г.


 


  • Чанг Х.К., Ян Х.И., Ли Т.Х., Шин М.К., Ли М.Х., Шин М.С. и др. Экстракт спермы Armycae подавляет липополисахаридиндуцированную экспрессию циклооксигеназы (коррекция циклоозигеназы)-2 и индуцибельной синтазы оксида азота в клетках микроглии мыши BV2. Биологический и фармацевтический вестник. 2005;28(3):449-54. Электронная публикация 4 марта 2005 г.


 


  • Мирмиранпур Х., Хагани С., Занди А., Халилзаде О.О., Герайеш-Неджад С., Мортеза А. и др. Амигдалин ингибирует ангиогенез в культивируемых эндотелиальных клетках диабетических крыс. Индийский журнал патологии и микробиологии. 2012;55(2):211-4. Электронная публикация 10 июля 2012 г. Чан Тай. Вероятный случай амигдалин-


 


  • индуцированной периферической нейропатии у вегетарианца с дефицитом витамина B12. Терапевтический лекарственный мониторинг. 2006;28(1):140-1. Электронная публикация 19 января 2006 г.


 


  • Чанг Х.К., Шин М.С., Ян ХИ, Ли Дж.В., Ким Ю.С., Ли М.Х. и др. Амигдалин индуцирует апоптоз посредством регуляции экспрессии Bax и Bcl-2 в клетках рака простаты человека DU145 и LNCaP. Биологический и фармацевтический вестник. 2006;29(8):1597-602. Электронная публикация 2 августа 2006 г.


 


  • Чен Ю, Ма Дж, Ван Ф, Ху Дж, Цуй А, Вэй С и др. Амигдалин индуцирует апоптоз в клетках линии клеток рака шейки матки человека HeLa. Иммунофармакология и иммунотоксикология. 2013;35(1):43-51. Электронная публикация 10.11.2012.


 


  • Хван Х.Дж., Ким П., Ким С.Дж., Ли Х.Дж., Шим И., Инь К.С. и др. Антиноцицептивный эффект амигдалина, выделенного из Prunus Armeniaca, на боль, вызванную формалином, у крыс. Биологический и фармацевтический вестник. 2008;31(8):1559-64. Электронная публикация 2 августа 2008 г.


 


  • Хван Х.Дж., Ли Х.Дж., Ким СиДжей, Шим И, Хам Д.Х. Ингибирующее действие амигдалина на экспрессию мРНК TNF-альфа и IL-1beta, индуцируемую липополисахаридами, и каррагинан-индуцированный артрит крыс. Журнал микробиологии и биотехнологии. 2008;18(10):1641-7. Электронная публикация


29.10.2008.

 


  • Макаревич Дж., Рутц Дж., Юнгель Э., Каульфус С., Райтер М., Цаур И. и др. Амигдалин блокирует рост клеток рака мочевого пузыря in vitro за счет уменьшения циклина А и cdk2. ПлоС один. 2014;9(8):e105590. Электронная публикация 20 августа 2014 г.


 


  • Мортель К.Г., Флеминг Т.Р., Рубин Дж., Кволс Л.К., Сарна Г., Кох Р. и др. Клинические испытания амигдалина (Лаэтрила) при лечении рака у человека. Медицинский журнал Новой Англии. 1982;306(4):201-6. Электронная публикация 28 января 1982 г.


 


  • Пак Х.Дж., Юн С.Х., Хан Л.С., Чжэн Л.Т., Юнг К.Х., Ум Ю.К. и др. Амигдалин ингибирует гены, связанные с клеточным циклом в клетках рака толстой кишки человека SNU-C4. Всемирный журнал гастроэнтерологии: WJG. 2005;11(33):5156-61. Электронная публикация 30 августа 2005 г.


Лаэтрил или Амигдалин (витамин В-17)–Питательное вещество Или лекарственное средство: ОбзорТекущие противоречия

Научно-исследовательский журнал в области фармацевтики, биологии и химии


Лаэтрил или Амигдалин (витамин В-17)Питательное вещество Или лекарственное средство: ОбзорТекущие противоречия.


МИСТЕР Сучитра и С. Партхасарати*.1Факультет биохимии Университета ШАСТРА, Тамилнад, Индия.2Медицинский колледж и Исследовательский институт имени Махатмы Ганди, Университет Шри Баладжи Видьяпита, Пудучерри– Южная Индия


Аннотация

Амигдалин / Витамин В17/ Лаэтрил - цианогенный диглюкозид, активный ингредиент нескольких фруктовых косточек
и сырых орехов, которые, как считалось, обладают противораковыми свойствами. Амигдалин содержится в косточках некоторых косточковых
фруктов, таких как абрикос, горький миндаль, персик и слива, а также в косточках яблока. Несмотря на то, что существует
несколько исследований на животных и людях, которые демонстрируют преимущества амигдалина при раке, они недостаточно хорошо
установлены в рандомизированных клинических испытаниях. При рассмотрении других заболеваний, таких как гипертония, боль и
бронхиальная астма, необходимо изучить роль Лаэтрила, используя этот препарат в качестве дополнения к обычным
терапевтическим стратегиям. Но как таковые, не следует отказываться от употребления абрикосовых косточек и яблочных косточек из
опасения отравления амигдалином ввиду их других полезных свойств.Ключевые слова:лаэтрил, амигдалин, витамин В17,* Автор-корреспондентISSN: 0975-8585Январь– Февраль2019RJPBCS10(1)Страница № 438ВВЕДЕНИЕ И ХИМИЯ

Витамин В17 / Амигдалин/Лаэтрил - один из самых противоречивых витаминов за последние три десятилетия.
Химически это цианогенный диглюкозид, но с конденсированной формулой C20-H27-NO-11 и MW
(молекулярной массой) 457. Он имеет химическое название дманделонетрил-бетаглюкозид-6 бета-D-глюкозид.
Впервые амигдалин был изобретен в начале девятнадцатого века во Франции в качестве активного компонента некоторых фруктов
с косточками и сырыми орехами.[1] Считалось, что цианид, один из важных метаболитов амигдалина, обладает противовоспалительным действием.-
обладает противораковыми свойствами и был введен в Соединенных Штатах в качестве противоопухолевого препарата в 1920-х годах. На протяжении многих лет использовалось несколько
лекарственных форм Лаэтрила, которые включали пероральные, перитонеальные, внутривенные и
внутримышечные препараты. Пероральная форма является наиболее мощным из препаратов. Любое вещество может
считаться настоящим витамином только тогда, когда оно необходимо для нормального функционирования клеток. Лаэтрил не вписывается в
это. Следовательно, называть его витамином - большой вопрос. Витамины - это вещества, которые должны быть обязательно включены в
диета для поддержания здоровья и профилактики определенных заболеваний при их дефиците. Они не могут синтезироваться в
организме. Отсюда название витамин, на самом деле неправильное для обозначения амигдалина. Лаэтрил представляет собой полусинтетическое соединение амигдалина,
синтезированное из амигдалина путем гидролиза. [2] Название витамин B-17 было дано лаэтрилу Э.Т. Кребсом-младшим, но
оно не одобрено Комитетом по номенклатуре витаминов Американского института питания.
Манделонитрил относится к части молекулы лаэтрила, из которой при разложении выделяется цианид. В
таблетке лаэтрила по 500 мг может содержаться от 5-51 мг цианистого водорода на грамм.[3]ИСТОЧНИКИПредпочтительным коммерческим источником лаэтрила являются абрикосовые косточки (например, Prunusarmeniaca).
Амигдалин содержится в нескольких косточковых фруктах, таких как горький миндаль (5%), абрикос (1,4%), персик (0,68%),
и слива (0,04-1,7%), он также содержится в семенах яблок (0,3%).[4] Из
плода вынимают косточки, раскалывают, чтобы получить ядра, которые сушат в духовке или на солнце. Затем ядра отваривают в этиловом
спирте и после выпаривания добавляют диэтиловый эфир. Химический амигдалин теперь осаждается в виде мелких
белых кристаллов. [5]