Тэг: Дихлорацетат натрия

Разработка пероральной формы DCA и Тиамина

Разработка пероральной формы DCA и Тиамина

Заголовок:
Development of an Oral Drug Formulation for Dichloroacetate and Thiamine
Авторы: George N. Henderson, Patrick O. Wraicn, Rebecca A. Darr, Stephen H. Curry, Hartmut Derendorf, Thomas G. Baumgarmer, Peter W. Stacpoole
Организации: University of Florida и другие
Журнал: Drug Development and Industrial Pharmacy, 1994

Аннотация (перевод):
Дихлорацетат (DCA) — это исследуемый препарат для лечения ряда метаболических и сердечно-сосудистых нарушений. До сих пор он использовался преимущественно в виде внутривенных краткосрочных схем терапии. Хроническое применение препарата может быть токсичным, частично из-за истощения запасов тиамина в тканях. Мы разработали стабильную жидкую форму натриевой соли DCA и тиамина гидрохлорида, подходящую для хронического перорального применения. Смесь DCA-тиамин представлена в виде приятного на вкус раствора, содержащего глицерин, бензоат натрия и аспартам в фосфатном буфере с pH 3.5. Ускоренное термическое исследование разложения препарата показало срок годности около 5 лет при 4°C и около 156 дней при 25°C. Стабильность также контролировалась в течение 1 года при температуре хранения 4°C.

Исследования стабильности в фосфатных буферах (с аспартамом):

Были приготовлены следующие стандартные растворы:


  • 1 М раствор монобазового фосфата (1 л),
  • 1% раствор бензоата натрия (100 мл),
  • 10% раствор тиамина (10 мл),
  • 1% раствор аспартама (100 мл),
  • 10% раствор красителя (10 мл).


Были приготовлены пять различных тестовых растворов (A–E) путём смешивания различных компонентов:


  • A–E: 2,5 мл фосфатного буфера, 5 мл бензоата натрия, 10 мл глицерина, 5 мл аспартама;
  • C–E: 1 мл тиамина;
  • B, D и E: 2,5 г DCA;
  • E: 100 мкл ароматизатора, 50 мкл красителя.


Затем pH доводили до 3,5 с использованием фосфорной кислоты, а объём – до 50 мл. Раствор E представляет собой финальную пероральную формулу, а растворы A–D – варианты с отсутствием одного или нескольких компонентов.

Четыре пробы по 10 мл каждого раствора (A–E) нагревались при 100, 95, 80 и 60°C. Объёмы по 500 мкл отбирались в различные моменты времени (от 0 до 48 часов) и замораживались при –20°C для последующего анализа методом ВЭЖХ (HPLC). Дополнительные исследования при 25°C и 4°C не показали изменений в концентрациях DCA, тиамина и аспартама в течение 30 дней.

Рисунок 2:

Влияние pH на разложение тиамина при 110°C:


  • В отсутствие (A) и
  • В присутствии (B) 10% DCA в 0,1 M фосфатном буфере.


Обозначения pH:


  • 9.0 (пустой круг),
  • 7.4 (закрашенный круг),
  • 6.0 (пустой треугольник),
  • 5.5 (закрашенный треугольник),
  • 5.0 (пустой квадрат),
  • 2.5 (закрашенный квадрат).


Устойчивость DCA и тиамина:

DCA оказался стабильным в исследованном диапазоне pH, и добавление тиамина не влияло на его стабильность. Интересно, что на всех уровнях pH разложение тиамина замедлялось в присутствии DCA (см. рисунок 2B). Разложение витамина было заметным только при pH 6 и 9. Из вида графиков (логарифм концентрации против времени) можно заключить, что разложение тиамина подчиняется кинетике первого порядка.

Пероральные формы DCA:

Начальные препараты перорального DCA/тиамина были приготовлены на основе коммерческих сиропов с вишнёвым вкусом и нейтральных сиропов (10% DCA). Предварительные дегустационные тесты показали недостаточное маскирование горько-солёного вкуса формулы DCA/тиамин. Исследования стабильности при повышенных температурах показали, что DCA оставался стабильным. Однако компоненты сиропов мешали анализу тиамина методом ВЭЖХ, после чего было принято решение использовать аспартам как безопасный и сладкий компонент.

Таблица 2:

Значения констант скорости (k) разложения аспартама
в растворе фосфатного буфера и в составе пероральной формулы DCA:

Температура (°C)

В буфере

В формуле DCA

110

9.6 × 10⁻⁵ мин⁻¹

6.7 × 10⁻⁵ мин⁻¹

95

3.3 × 10⁻⁵ мин⁻¹

3.9 × 10⁻⁵ мин⁻¹

80

1.8 × 10⁻⁵ мин⁻¹

1.4 × 10⁻⁵ мин⁻¹

60

2.4 × 10⁻⁶ мин⁻¹

1.6 × 10⁻⁶ мин⁻¹

Таблица 3:

Прогнозируемый срок хранения пероральной формы DCA:

Показатель

В буфере

В формуле DCA

Ea (кал/моль)

18132

9646

A (мин⁻¹)

2.352 × 10⁸

7.667 × 10⁷

k при 4°C (мин⁻¹)

1.129 × 10⁻⁷

5.787 × 10⁻⁸

Срок хранения при 4°C (дни/годы)

925 / 2.53

1806 / 4.95

k при 25°C (мин⁻¹)

1.181 × 10⁻⁶

6.706 × 10⁻⁷

Срок хранения при 25°C (дни/годы)

88 / 0.24

156 / 0.43

Выводы:

На рисунках 3A и 3B представлены графики log k против 1/T (1000/T) для аспартама в буфере и в растворе DCA соответственно. Линейность графиков позволяет с уверенностью оценить сроки хранения, приведённые в таблице 3.

Дополнительные исследования при рекомендуемом условии хранения (4°C в течение 1 года) не выявили признаков разложения компонентов препарата и отсутствия бактериального или грибкового роста. Следовательно, формулу можно хранить в холодильнике как минимум 1 год.

Список литературы (основные источники):


  1. Stacpoole P.W. Metabolism, 38, 1124 (1989).
  2. Wargovich T.J. et al. Am. J. Cardiol., 61, 65 (1988).
  3. Stacpoole P.W. et al. N. Engl. J. Med., 309, 390 (1983).
  4. DeVivo D.C. et al. Ann. Neurol., 28, 437 (1990).
  5. Stacpoole P.W. et al. N. Engl. J. Med., 298, 526 (1978).
  6. Stacpoole P.W. et al. Fund. Appl. Toxicol., 14, 327 (1990).
  7. Levhuk J.W. et al. Am. J. Hosp. Pharm., 45, 1311 (1988).
  8. Bronson M.H. et al. J. Parenter. Enteral Nutr., 12, 25 (1988).
  9. Curry S.H. et al. Clin. Pharmacol. Ther., 37, 89 (1985).
  10. Wells P.G. et al. Diabetologia, 19, 109 (1980).
  11. Somogyi I.C. J. Nutr. Sci. Vitaminol., 22 (Suppl), 29 (1976).
  12. Hilker D.L. & Clifford A.J. J. Chromatogr., 231, 433 (1982).
  13. Gaines S.M. & Bada J.L. J. Chromatogr., 389, 219 (1987).
  14. Maeda Y. et al. J. Assoc. Off. Anal. Chem., 72, 244 (1989).
  15. Chu P.I. Pharmacokinetics of sodium dichloroacetate, Ph.D. диссертация, University of Florida, Gainesville, FL (1987).
  16. Farrer K.L.H. Biochem. J.


Влияние дихлорацетата натрия как отдельного препарата, так и в составе комбинированной терапии на рост и метастазирование опухолей легких

Влияние дихлорацетата натрия как отдельного препарата, так и в составе комбинированной терапии на рост и метастазирование опухолей легких


Кафедра фармакологии и терапии, Колледж медицины и наук о здоровье, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты2Медицинский факультет, Колледж медицины и наук о здоровье, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты3Кафедра физиологии, Колледж медицины и наук о здоровье, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты4Центр медицинских наук имени Зайеда, Университет Объединенных Арабских Эмиратов, Аль-Айн 17666, Объединенные Арабские Эмираты5Национальный институт здоровья и медицинских исследований (INSERM), 75013 Париж, Франция*Автор, которому следует адресовать корреспонденцию.


Международный журнал молекулярных наук 2021 , 22 (22), 12553; https://doi.org/10.3390/ijms222212553Получено: 24 октября 2021 г. / Пересмотрено: 14 ноября 2021 г. / Принято: 17 ноября 2021 г. / Опубликовано: 21 ноября 2021 г.(Эта статья относится к разделу Биохимия )

Абстрактный

Метаболическое перепрограммирование было признано важнейшим признаком нового рака. Сообщалось, что дихлорацетат (DCA), ингибитор пируватдегидрогеназной киназы (PDK), обладает противораковыми эффектами, обращая вспять гликолиз, связанный с опухолью. Это исследование было проведено для изучения противоракового потенциала DCA при раке легких отдельно и в сочетании с химио- и таргетной терапией с использованием двух линий клеток немелкоклеточного рака легких (НМРЛ), а именно A549 и LNM35. DCA заметно вызывал зависящее от концентрации и времени снижение жизнеспособности и роста колоний клеток A549 и LNM35 in vitro. DCA также снижал рост опухолевых ксенотрансплантатов как в хориоаллантоисной мембране куриного эмбриона, так и в моделях голых мышей in vivo. Кроме того, DCA снижал ангиогенную способность эндотелиальных клеток пупочной вены человека in vitro. С другой стороны, DCA не ингибировал in vitro клеточную миграцию и инвазию, а также in vivo заболеваемость и рост метастазов подмышечных лимфатических узлов у голых мышей. Лечение DCA не показало никакой токсичности у куриных эмбрионов и голых мышей. Наконец, мы продемонстрировали, что DCA значительно усилил противораковый эффект цисплатина в LNM35. Кроме того, сочетание DCA с гефитинибом или эрлотинибом приводит к аддитивным эффектам на ингибирование роста колоний LNM35 после семи дней лечения и к синергетическим эффектам на ингибирование роста колоний A549 после 14 дней лечения. В совокупности это исследование демонстрирует, что DCA является безопасным и перспективным терапевтическим средством для лечения рака легких.Ключевые слова:рак легких ; дихлорацетат ; ингибитор киназы пируватдегидрогеназы ; рост опухоли ; ангиогенез ; гефитиниб ; эрлотиниб


1. Введение

Рак легких является вторым по частоте встречаемости видом рака с самым высоким уровнем смертности в мире, составив 2,2 миллиона случаев и 1,8 миллиона смертей в 2020 году. Прогнозируется, что заболеваемость и смертность продолжат расти примерно на 60%, до предполагаемых 3,6 миллиона и 3 миллионов соответственно в 2040 году [ 1 ]. Большинство случаев рака легких — это НМРЛ, на которые приходится 80–85% всех случаев рака легких [ 2 ]. Развитие таргетной и иммунотерапии произвело революцию в лечении НМРЛ. Однако побочные эффекты, резистентность и эффективность в небольшой терапевтически чувствительной группе пациентов создают неравенство в доступе к таким агентам [ 3 , 4 , 5 ]. Таким образом, это подчеркивает необходимость в более безопасных и эффективных агентах.Метаболическое перепрограммирование является одним из отличительных признаков рака, который является многообещающей целью для разработки эффективных терапевтических подходов [ 6 ]. По сравнению с нормальными клетками, которые в основном полагаются на митохондриальное окислительное фосфорилирование (OXPHOS) в аэробных условиях, раковые клетки отклоняются от этого нормального метаболического фенотипа, полагаясь в основном на цитозольный гликолиз и молочнокислое брожение, даже в присутствии кислорода, чтобы удовлетворить потребности высокой пролиферации [ 7 ]. Это явление известно как эффект Варбурга, который использовался в качестве терапевтической цели для ингибирования роста опухоли [ 8 ]. PDK является одним из основных ферментов, контролирующих гликолиз и OXPHOS [ 9 ]. Он отключает митохондриальный OXPHOS путем фосфорилирования и ингибирования пируватдегидрогеназы (PDH), ключевого фермента, катализирующего окислительное превращение пирувата в ацетилкофермент А в митохондриях [ 10 ].DCA — это препарат с небольшой молекулярной массой, который использовался при лактоацидозе, врожденных митохондриальных дефектах и ​​диабете [ 11 ]. Интересно, что DCA продемонстрировал способность переключать метаболизм опухоли с цитозольного аэробного гликолиза на митохондриальный OXPHOS путем ингибирования PDK и повышения активности PDH [ 12 ]. Таким образом, сообщалось, что DCA оказывает противораковое действие за счет увеличения оттока цитохрома c и других факторов, индуцирующих апоптоз, а также повышения уровня ROS с последующей гибелью раковых клеток [ 11 , 13 , 14 , 15 ]. Однако в клинических исследованиях профиль безопасности DCA вызывал беспокойство. 

2. Результаты

2.1 Влияние DCA на жизнеспособность клеток и рост колоний линий клеток НМРЛ

Эффект увеличения концентрации DCA (3,125–100 мМ) был исследован на двух линиях клеток NSCLC, а именно, A549 и LNM35. Как показано на рисунке 1 , DCA снижал жизнеспособность A549 ( рисунок 1 A) и LNM35 ( рисунок 1 B) в зависимости от концентрации и времени. Полумаксимальная ингибирующая концентрация (IC 50 ) DCA через 48 ч составляет приблизительно 25 мМ для обеих линий клеток.Ijms 22 12553 g001 550Рисунок 1. Влияние DCA на жизнеспособность клеток НМРЛ и рост колоний. Экспоненциально растущие раковые клетки A549 ( A ) и LNM35 ( B ) инкубировали в отсутствие или в присутствии увеличивающихся концентраций DCA (3,125–100 мМ) в течение 24, 48 и 72 ч. Жизнеспособность клеток оценивали, как описано в разделе «Материалы и методы». Эксперименты повторяли не менее трех раз. Формы представляют средние значения, столбцы представляют SEM. Раковые клетки A549 ( C ) и LNM35 ( D ) выращивали в течение 7 дней для формирования колоний, которые обрабатывали различными концентрациями DCA (6,25–50 мМ) в течение 7 дней, после чего колонии фиксировали, окрашивали и подсчитывали, как описано в разделе «Материалы и методы». ( E ) Репрезентативные фотографии контрольных и обработанных DCA колоний показаны для раковых клеток A549 и LNM35. Результаты представлены в виде процента колоний (среднее значение ± SEM) обработанных клеток по сравнению с контролем. * Значимо отличается при <0,05. ** Значимо отличается при <0,01. *** Значимо отличается при <0,001. **** Значимо отличается при <0,0001. ns — незначимо.Для дальнейшей оценки противоракового эффекта DCA было исследовано его влияние на рост предварительно сформированных колоний клеточных линий A549 и LNM35. Для этого обе клеточные линии выращивали при определенной плотности в течение 1 недели для формирования колоний, а затем обрабатывали возрастающей концентрацией DCA в течение 1 недели. Как показано на рисунке 1 , DCA вызывал зависимое от концентрации сокращение числа колоний для обеих клеточных линий, с более высокой чувствительностью, показанной в колониях LNM35 ( рисунок 1 D,E) по сравнению с колониями A549 ( рисунок 1 C,E). Эти результаты подтверждают противораковый эффект DCA in vitro.

2.2 Влияние DCA на рост ксенотрансплантатов опухоли НМРЛ в курином эмбрионе CAM и голых мышах in vivo

Для подтверждения фармакологической значимости наших результатов in vitro противораковый эффект DCA оценивали in vivo с использованием анализа CAM на курином эмбрионе. Ксенотрансплантированные опухоли A549 и LNM35 на CAM обрабатывали 50 мМ DCA каждые 48 ч в течение 1 недели. На E17 опухоли извлекали из верхней части CAM и взвешивали. Как показано на рисунке 2 , 50 мМ DCA значительно снизили рост ксенотрансплантатов опухоли A549 примерно на 40% ( рисунок 2 A), в то время как не показали значительного снижения роста ксенотрансплантатов опухоли LNM35 ( рисунок 2 B). Поэтому 100 мМ DCA исследовали на ксенотрансплантатах опухоли LNM35, и это значительно снизило рост примерно на 40% ( рисунок 2 C). Токсичность также оценивали путем сравнения процента живых эмбрионов в контрольной и обработанной DCA группах. На E17 DCA не проявил цитотоксичности, поскольку процент живых эмбрионов был аналогичен контрольной группе и группе DCA ( рисунок 2 D–F).Ijms 22 12553 g002 550Рисунок 2. Влияние DCA на рост ксенотрансплантатов опухолей A549 и LNM35 в CAM куриного эмбриона in vivo. ( A ) Масса опухоли раковых клеток A549, ксенотрансплантированных на CAM при плотности 1 миллион клеток после обработки лекарственным раствором (0,9% NaCl) или DCA (50 мМ) в течение 1 недели. ( B , C ) Масса опухоли раковых клеток LNM35, ксенотрансплантированных на CAM при плотности 0,3 миллиона клеток после обработки лекарственным раствором (0,9% NaCl) или DCA (50 мМ и 100 мМ). ( D ) Процент живых эмбрионов в контрольных и обработанных DCA ксенотрансплантатах A549. ( E , F ) Процент живых эмбрионов в контрольных и обработанных DCA ксенотрансплантатах LNM35. Столбцы представляют собой средние значения; Столбцы — это SEM *** Значимо отличается при <0,001. **** Значимо отличается при <0,0001. ns — незначимо.Влияние DCA на опухолевые ксенотрансплантаты также оценивалось in vivo с использованием бестимусных мышей, инокулированных клетками A549 и LNM35. Сообщалось, что средние летальные дозы (LD50) DCA составляли 4,5 г/кг и 5,5 г/кг у крыс и мышей соответственно [ 17 ]. Поэтому мыши с опухолевыми ксенотрансплантатами A549 получали перорально ежедневно (5 дней в неделю) 50 мг/кг и 200 мг/кг DCA в течение 38 последовательных дней. Лечение DCA (50 мг/кг) не вызвало значительного уменьшения объема опухолевых ксенотрансплантатов A549, в то время как DCA (200 мг/кг) значительно уменьшил объем примерно на 45% ( Рисунок 3 A). Аналогичная разница также наблюдалась в весе опухоли в конце эксперимента ( Рисунок 3 B). Не было выявлено никаких явных признаков токсичности или каких-либо проявлений нежелательного воздействия DCA на поведение животных, массу тела ( рисунок 3 C), компоненты крови, функцию печени и почек ( рисунок 3 D).Ijms 22 12553 g003 550Рисунок 3. Влияние DCA на рост ксенотрансплантата A549, инокулированного голым мышам in vivo. ( A ) Объем опухоли ксенотрансплантата A549, инокулированного подкожно голым мышам и леченного DCA (50 и 200 мг/кг) перорально или только контрольным раствором-носителем в течение 38 дней. ( B ) Вес опухоли, полученный от тех же контрольных и обработанных DCA голых мышей. ( C ) Средний вес тела мышей в течение дней лечения. ( D ) Образцы крови мышей анализировались на общий анализ крови, параметры функции печени и почек. Результаты представляют собой среднее значение ± SEM для 9–10 мышей/группу. * Значительно отличается при <0,05. ** Значительно отличается при <0,01. ns — незначимо.С другой стороны, наблюдался рост ксенотрансплантатов опухоли LNM35, и мышам вводили перорально 200 мг/кг и 500 мг/кг DCA каждый день (5 дней в неделю) в течение 10 и 24 дней соответственно. Лечение DCA (200 мг/кг) вызвало незначительное уменьшение объема ксенотрансплантатов опухоли LNM35 ( Рисунок 4 A), в то время как DCA (500 мг/кг) значительно уменьшило объем опухоли почти на 75% ( Рисунок 4 B). Почти такие же различия наблюдались в весе опухоли в конце экспериментов ( Рисунок 4 C). Никаких признаков токсичности не наблюдалось в поведении животных или не было обнаружено по весу мышей ( Рисунок 4 D,E), компонентам крови, печени и функции почек ( Рисунок 4 F).Ijms 22 12553 g004 550Рисунок 4. Влияние DCA на рост ксенотрансплантата LNM35, инокулированного голым мышам in vivo. ( A , B ) Объем опухоли ксенотрансплантата LNM35, инокулированного подкожно голым мышам и леченного, соответственно, DCA (200 и 500 мг/кг) перорально или только контрольным раствором-носителем ежедневно в течение 10 и 24 дней. ( C ) Вес опухоли, полученный от контрольных и голых мышей, получавших 500 мг/кг DCA. ( D , E ) Средний вес тела мышей в течение дней лечения. ( F ) Образцы крови мышей анализировались на общий анализ крови, параметры функции печени и почек. Результаты представляют собой среднее значение ± SEM для 9–11 мышей/группу. * Значимо отличается при <0,05. ** Значимо отличается при <0,01. *** Значимо отличается при <0,001. ns — недостоверно.

2.3 Влияние DCA на формирование капилляроподобных структур и прорастание HUVEC in vitro

Ангиогенез является одним из признаков рака, который обеспечивает поставку питательных веществ и кислорода для роста и распространения раковых клеток. Влияние DCA на ангиогенез было исследовано in vitro с использованием HUVEC, которые могут образовывать капилляроподобные структуры при посеве на Матригель. Как показано на рисунке 5 A, HUVEC образовывали организованные капилляроподобные структуры в отсутствие DCA, и эта организация была нарушена после добавления DCA. Длины трубок измеряли вручную ( рисунок 5 B) и с помощью анализа изображений Wimasis ( рисунок 5 C), и было обнаружено, что 25 мМ DCA были способны значительно ингибировать способность HUVEC образовывать нитевидные структуры почти на 30–40%. Это ингибирование наблюдалось при концентрациях, которые не показывали никакого снижения жизнеспособности HUVEC ( рисунок 5 D).Ijms 22 12553 g005 550Рисунок 5. Влияние DCA на формирование капилляроподобных структур HUVEC in vitro. ( A ) Формы ангиогенеза, индуцированного в HUVEC, культивируемых на матрице Matrigel в 96-луночном планшете в отсутствие и в присутствии различных концентраций DCA. Для контрастной фотографии использовался инвертированный микроскоп (4×), а для уточнения изображений использовалось программное обеспечение Wimasis. ( B , C ) Количественная оценка канальцевого ангиогенеза, индуцированного в клетках HUVEC, культивируемых в отсутствие и в присутствии DCA (6,25–25 мМ) вручную и с помощью программного обеспечения Wimasis соответственно. ( D ) Жизнеспособность клеток HUVEC определялась, как описано в разделе «Материалы и методы», в отсутствие и в присутствии DCA (6,25–25 мМ). Эксперименты повторяли не менее 3 раз. Столбцы представляют средние значения; полосы представляют SEM *** Значительно отличается при <0,001. **** Значимое отличие при <0,0001. ns — незначимо.В анализе прорастания сфероиды HUVECs были встроены в 3D коллагеновую матрицу в присутствии и отсутствии VEGF 30 нг/мл, DCA 25 мМ или комбинации VEGF и DCA. Рисунок 6A показывает в репрезентативном эксперименте, что проростки, образованные в присутствии VEGF, были ингибированы DCA, 25 мМ. Были измерены общие длины проростков, и было обнаружено, что общая длина была значительно увеличена в присутствии VEGF, а DCA значительно уменьшил длину проростков, индуцированных VEGF ( Рисунок 6B ). Это ингибирование наблюдалось при концентрации, которая не показывала никакого снижения жизнеспособности HUVECs ( Рисунок 6C ).Ijms 22 12553 g006 550Рисунок 6. Влияние DCA на образование ростков внедренными сфероидами HUVEC in vitro. ( A ) Представительные изображения предварительно окрашенных сфероидов HUVEC через 24 часа внедрения в коллагеновую матрицу в присутствии VEGF 30 нг/мл, DCA 25 мМ или VEGF + DCA. Использовался инвертированный микроскоп с 20-кратным увеличением. ( B ) Среднее значение общей длины ростков различных сфероидов для каждого условия из одного представительного эксперимента. ( C ) Жизнеспособность HUVEC определялась, как описано в разделе «Материалы и методы». Эксперименты были повторены 2 раза. Столбцы представляют средние значения 12 сфероидов; полосы представляют SEM **** Значительно отличается при <0,0001. #### Значительно отличается при <0,0001. ns: незначимо.Эти данные свидетельствуют о том, что ингибирование ангиогенеза в опухолях может быть потенциальным механизмом, выходящим за рамки противоракового действия DCA.

2.4 Влияние DCA на метастазы НМРЛ in vivo и инвазию и миграцию in vitro

Метастазирование — многоступенчатый процесс, включающий отделение клеток от первичной опухоли, миграцию клеток в соседние ткани с последующей инвазией клеток в кровь или лимфатическую систему до колонизации этих клеток в отдаленных органах. Влияние DCA на метастазирование у мышей, которым ксенотрансплантировали клетки рака легких с высокой степенью метастазирования, а именно LNM35, оценивали путем проверки веса и частоты подмышечных лимфатических узлов в контрольной и обработанной DCA группах. DCA снижает рост метастазов в лимфатических узлах, не достигая статистической значимости ( рисунок 7 A). Кроме того, он не влияет на частоту метастазов в лимфатических узлах ( рисунок 7 B).Ijms 22 12553 g007 550Рисунок 7. Влияние DCA на метастазы НМРЛ in vivo и инвазию и миграцию in vitro. ( A ) Вес подмышечных лимфатических узлов с метастазами LNM35 в контрольной группе и группе, получавшей DCA (500 мг/кг перорально). ( B ) Процент мышей с метастазами в лимфатических узлах LNM35 в контрольной группе и группе, получавшей DCA. Результаты представляют собой среднее значение ± SEM для 9–10 мышей/группу. Используя анализ в камере инвазии Бойдена, клетки LNM35 ( C ) и A549 ( D ) инкубировали в течение 24 ч в отсутствие и в присутствии DCA (6,25, 12,5 мМ). Клетки, которые проникли в Матригель и пересекли поры 8 мкм, определяли, как описано в разделе «Материалы и методы». Царапины были нанесены на сливающиеся монослои клеток LNM35 ( E ) и A549 ( F ), культивируемых в 6-луночном планшете в отсутствие и в присутствии DCA (6,25, 12,5 мМ). Инвертированный микроскоп с 4-кратным увеличением использовался для измерения среднего расстояния, на которое клетки мигрировали от края соскобленной области в течение 2, 6 и 24 ч. Фотографии индуцированных царапин на сливающихся монослоях клеток LNM35 ( G ) и клеток A549 ( H ) в присутствии и в отсутствие различных концентраций DCA через 0, 2, 6 и 24 ч. Все эксперименты были повторены не менее 3 раз. Столбцы или формы являются средними значениями; столбцы являются SEM * Значительно отличается при <0,05. ** Значительно отличается при <0,01. ns — незначимо.Для оценки способности DCA инвазии и миграции клеток A549 и LNM35 in vitro использовались анализ инвазии в камере Бойдена и анализ миграции при заживлении ран. Чтобы убедиться, что потенциальное влияние DCA на миграцию и инвазию не обусловлено гибелью клеток, мы использовали более низкие концентрации DCA. В этих условиях 6,25 мМ и 12,5 мМ DCA не смогли ингибировать клеточную инвазию LNM35 ( Рисунок 7 C) и A549 ( Рисунок 7 D). Аналогично, эти концентрации не смогли ингибировать клеточную миграцию обеих клеточных линий ( Рисунок 7 E–H).

2.6 Влияние DCA в сочетании с EGFR-TKi на жизнеспособность клеток НМРЛ и рост колоний

Влияние 48-часовой инкубации с увеличивающимися концентрациями гефитиниба и эрлотиниба (5–80 мкМ) было исследовано на раковых клетках A549 и LNM35. Гефитиниб вызывал зависимое от концентрации снижение жизнеспособности раковых клеток A549 и LNM35 ( Рисунок 9 A,B); аналогично, эрлотиниб показал ту же картину снижения в двух клеточных линиях ( Рисунок 9 C,D). Количество 20 мкМ гефитиниба и эрлотиниба обладает способностью в обеих клеточных линиях ингибировать клеточную жизнеспособность A549 и LNM35 примерно на 40%, и эта концентрация использовалась в комбинированных экспериментах с DCA.Ijms 22 12553 g009 550Рисунок 9. Влияние EGFR-Tki на жизнеспособность клеток НМРЛ. Экспоненциально растущие клетки A549 ( A , C ) и LNM35 ( B , D ) обрабатывали лекарственным носителем, гефитинибом или эрлотинибом (5–80 мкМ) в течение 48 ч. Жизнеспособность клеток определяли с помощью люминесцентного анализа CellTiter-Glo, как описано в разделе «Материалы и методы». Эксперименты повторяли не менее 3 раз. Столбцы — средние значения; полосы — SEM * Значимо отличается при <0,05. ** Значимо отличается при <0,01. **** Значимо отличается при <0,0001. ns — незначимо.Обработка клеток в течение 48 ч 25 мМ DCA значительно усилила эффект гефитиниба на жизнеспособность клеток A549 ( Рисунок 10 A) и LNM35 ( Рисунок 10 B). Затем был проведен клоногенный анализ для оценки эффекта комбинации на рост предварительно сформированных колоний обеих клеточных линий после семи дней обработки. Концентрация 20 мкМ гефитиниба вызвала 20–40%-ное снижение количества колоний A549 ( Рисунок 10 C) и LNM35 ( Рисунок 10 D). По сравнению с индивидуальными обработками, комбинация DCA с гефитинибом приводит к значительному снижению количества колоний обеих клеточных линий ( Рисунок 10 C, D), вызывая аддитивный эффект в LNM35 по сравнению с расчетным аддитивным значением отдельных обработок (86% против 90%). Кроме того, эта комбинация показывает значительное снижение плотности клеток отдельных колоний обеих клеточных линий ( рисунок 10 E,F).Ijms 22 12553 g010 550Рисунок 10. Влияние DCA в сочетании с гефитинибом на жизнеспособность клеток НМРЛ и рост колоний. Экспоненциально растущие клетки A549 ( A ) и LNM35 ( B ) обрабатывали, соответственно, DCA (25 мМ) ± гефитиниб 20 мкМ. Жизнеспособность клеток определяли с помощью люминесцентного анализа CellTiter-Glo. ( C , D ) Обработка предварительно сформированных колоний клеток A549 и LNM35, соответственно, DCA (25 мМ) ± гефитиниб 20 мкМ в течение 7 дней, после чего колонии фиксировали, окрашивали и подсчитывали, как описано в разделе «Материалы и методы». ( E , F ) Репрезентативные изображения колоний для контрольной и обработанной групп показаны для раковых клеток A549 и LNM35. Все эксперименты были повторены не менее 3 раз. Столбцы представляют собой средние значения; Столбцы — это SEM * Значимо отличается при <0,05. ** Значимо отличается при <0,01. *** Значимо отличается при <0,001. **** Значимо отличается при <0,0001. ns — незначимо.Аналогично, DCA усиливает ингибирующее действие эрлотиниба на жизнеспособность клеток A549 и LNM35 ( Рисунок 11 A, B). Количество колоний A549 и LNM35 было значительно снижено при применении эрлотиниба на 30–40% ( Рисунок 11 C, D), и это снижение было усилено DCA в LNM35 ( Рисунок 11 D), но не в A549 ( Рисунок 11 C). Комбинация вызвала аддитивные эффекты в LNM35, уменьшив количество колоний на 76 ± 2,8%, что статистически незначимо по сравнению с расчетным аддитивным значением отдельных обработок (91 ± 5,8%). Несмотря на незначительное снижение количества колоний A549 при использовании комбинации по сравнению с обработкой одним препаратом, плотность клеток каждой колонии была значительно снижена по сравнению с отдельными обработками ( Рисунок 11 E). Аналогичным образом, плотность клеток колоний LNM35 была снижена в группе, получавшей комбинированную терапию ( рисунок 11 F).Ijms 22 12553 g011 550Рисунок 11. Влияние DCA в сочетании с эрлотинибом на жизнеспособность клеток НМРЛ и рост колоний. Экспоненциально растущие клетки A549 ( A ) и LNM35 ( B ) обрабатывали, соответственно, DCA (25 мМ) ± эрлотиниб 20 мкМ. Жизнеспособность клеток определяли с помощью люминесцентного анализа CellTiter-Glo. ( C , D ) Обработка предварительно сформированных колоний клеток A549 и LNM35, соответственно, DCA (25 мМ) ± эрлотиниб 20 мкМ в течение 7 дней, после чего колонии фиксировали, окрашивали и подсчитывали, как описано в разделе «Материалы и методы». ( E , F ) Репрезентативные изображения колоний для контрольной и обработанной групп показаны для раковых клеток A549 и LNM35. Все эксперименты были повторены не менее 3 раз. Столбцы представляют собой средние значения; Столбцы — это SEM. ** Значимо отличается при <0,01. *** Значимо отличается при <0,001. **** Значимо отличается при <0,0001. ns — незначимо.Для изучения различий между двумя клеточными линиями в воздействии комбинированной терапии на рост колоний была исследована более длительная продолжительность лечения DCA в сочетании с гефитинибом или эрлотинибом на рост колоний A549. Как показано на рисунке 12 , комбинация DCA с гефитинибом приводит к значительному сокращению числа колоний ( рисунок 12 A,B). Эта комбинация вызвала большее ингибирование числа колоний по сравнению с рассчитанными аддитивными эффектами препаратов, используемых по отдельности ( рисунок 12 C). Аналогичное наблюдение было отмечено при комбинации DCA и эрлотиниба ( рисунок 12 D–F). В заключение следует отметить, что увеличение продолжительности лечения с семи до четырнадцати дней приводит к синергетическим эффектам предлагаемых комбинированных протоколов.Ijms 22 12553 g012 550Рисунок 12. Влияние более длительного лечения DCA в сочетании с гефитинибом и эрлотинибом на рост колоний A549. Обработка предварительно сформированных колоний A549 DCA (25 мМ) ± гефитиниб 20 мкМ ( A , B ) и DCA (25 мМ) ± эрлотиниб 20 мкМ ( D , E ) в течение 14 дней, после чего колонии фиксировали, окрашивали и подсчитывали, как описано в разделе «Материалы и методы». ( C , F ) Влияние комбинаций DCA и гефитиниба или эрлотиниба на рост колоний по сравнению с рассчитанными аддитивными эффектами двух препаратов по отдельности. Все эксперименты были повторены 3 раза. Столбцы представляют собой средние значения; полосы представляют собой SEM ** Значительно отличается при <0,01. *** Значительно отличается при <0,001. **** Значительно отличается при <0,0001.

3. Обсуждение

Несмотря на недавние достижения в скрининге, диагностике и лечении рака легких, в дополнение к замечательному прогрессу в понимании его молекулярной биологии, рак легких является вторым наиболее часто диагностируемым видом рака с самым высоким уровнем смертности во всем мире в 2020 году [ 1 ]. Поэтому прилагаются различные усилия для разработки эффективных агентов и подходов с хорошими пределами безопасности для воздействия на рак легких в попытке обеспечить излечение или улучшить общую выживаемость пациента. Целью данного исследования было изучение влияния метаболического препарата DCA на рост, миграцию, инвазию и ангиогенез рака легких in vitro и рост опухоли и метастазы in vivo, а также влияние целевого метаболизма DCA на цитотоксический эффект одобренной химиотерапии и таргетной терапии в качестве шага к достижению лучшей эффективности и лучшего профиля безопасности.Настоящее исследование показало, что DCA (3,125–100 мМ) вызывал зависящее от концентрации и времени снижение жизнеспособности клеток и роста предварительно сформированных колоний клеточных линий A549 и LNM35. IC50 DCA через 48 ч составлял приблизительно 25 мМ в обеих клеточных линиях. Наши результаты согласуются с другими отчетами, в которых DCA (10–90 мМ) подавлял жизнеспособность клеток линий колоректального рака (КРР), а именно SW620, LS174t, LoVo и HT-29, в зависимости от концентрации через 48 ч с диапазоном IC50 30–50 мМ в соответствии с типом клеточной линии [ 18 ]. Аналогично, DCA (20 мМ) значительно снизил жизнеспособность клеток CRC, а именно SW480, LoVo и HT-29 через 48 ч, с большим эффектом на слабодифференцированные клетки SW480 и метастатические клетки LoVo по сравнению с хорошо дифференцированными клетками HT-29 [ 19 ]. С другой стороны, более высокий IC50 был зарегистрирован в клетках рака шейки матки, клетках Hela и SiHa [ 20 ], в то время как DCA (20 мМ) не смог ингибировать жизнеспособность клеток линии рака молочной железы MCF-7 [ 21 ].Наши данные in vitro были подтверждены путем тестирования влияния DCA на прогрессирование опухоли in vivo с использованием моделей CAM куриного эмбриона и бестимусных мышей. Во-первых, мы продемонстрировали, что значительное снижение роста было достигнуто в A549 и LNM35, ксенотрансплантированных на CAM куриного эмбриона, при использовании доз DCA 50 мМ и 100 мМ соответственно. Во время написания этой рукописи было опубликовано исследование, в котором изучалось влияние натрия DCA на линии клеток глиобластомы U87 MG и PBT24, ксенотрансплантированных на CAM куриного эмбриона [ 22 ]. Авторы сообщили об изменении роста опухолей U87 MG и PBT24 в ответ на различные концентрации натрия DCA. Сообщалось, что 10 мМ натрия DCA были эффективны в снижении роста опухоли PBT24, но не опухоли U87, что отражает некоторые различия в биологии двух линий клеток [ 22 ]. Во-вторых, мы продемонстрировали, что лечение DCA в дозах 200 мг/кг ежедневно (5 дней в неделю) вызвало значительное снижение роста ксенотрансплантированной опухоли A549 на 40%, в то время как для значительного снижения роста ксенотрансплантированной опухоли LNM35 потребовалась более высокая доза DCA (500 мг/кг). В этом контексте ранее сообщалось, что DCA (100 мг/кг) увеличил время удвоения опухолей A549 и H1975 NSCLC примерно с 3 до 6,5 дней [ 15 ], но не оказал значительного ингибирующего эффекта у мышей с опухолью MDA-MB-231 [ 23 ]. С другой стороны, значительная задержка роста также наблюдалась у ксенотрансплантатов HT-29, леченных пероральным DCA (200 мг/кг) ежедневно в течение четырех дней [ 24 ].Исследование токсичности потенциальных противораковых препаратов так же важно, как и исследование их эффективности, поскольку тяжелая токсичность может помешать их использованию в клинике. DCA не показал цитотоксичности для куриных эмбрионов и бестимусных мышей. Процент живых эмбрионов был одинаковым в группах, получавших DCA, и контрольных группах. Кроме того, DCA не повлиял на поведение мышей, вес, общий анализ крови, параметры функции печени и почек по сравнению с контрольной группой. Эти результаты согласуются с предыдущими доклиническими и клиническими отчетами, которые не показали никаких доказательств тяжелой гематологической, печеночной, почечной или сердечной токсичности при лечении DCA [ 13 , 14 ]. Немногие пациенты, получавшие лечение DCA, жаловались на общие желудочно-кишечные эффекты. Кроме того, наиболее распространенным ограничением для введения DCA является обратимая периферическая невропатия, которую можно свести к минимуму путем снижения дозы или дополнительного введения антиоксидантов [ 11 ]. Включение DCA в системы доставки лекарств (СДЛ), такие как наночастицы, является многообещающим подходом для сохранения противораковой активности DCA с минимальными побочными эффектами [ 25 , 26 , 27 ].Сообщалось, что противораковый эффект DCA частично обусловлен индукцией апоптоза, как это наблюдалось в клетках колоректального рака [ 19 ] и клетках НМРЛ [ 15 ] или ингибированием ангиогенеза. Ингибиторы ангиогенеза, такие как антитело к VEGF бевацизумаб и блокатор рецепторов VEGF рамуцирумаб, были клинически одобрены для лечения рака легких [ 28 ]. Несмотря на их подтвержденную эффективность, их скромные общие терапевтические эффекты с сопутствующими побочными эффектами подчеркивают очевидную необходимость в более эффективном подходе, нацеленном на ангиогенез [ 28 ]. Наше исследование показало, что DCA (25 мМ) является перспективным антиангиогенным средством, поскольку он способен значительно ингибировать образование и прорастание эндотелиальных клеток in vitro. Кроме того, более низкие концентрации DCA (6,25 и 12,5 мМ) не влияли на образование трубок HUVEC. Эти результаты согласуются с отчетом Шунджанса и его коллег, которые продемонстрировали, что 5 мМ и 10 мМ DCA не повлияли на формирование трубок HUVEC in vitro [ 29 ]. В соответствии с нашими данными, DCA вызвал снижение плотности микрососудов опухоли у обработанных крыс, у которых также было отмечено подавление HIF1α в опухолевых клетках [ 30 ]. С другой стороны, Чжао и его коллеги недавно сообщили, что DCA стимулирует ангиогенез в модели сосудистой деменции у крыс за счет улучшения функции эндотелиальных клеток-предшественников [ 31 ].Примерно у 30–40% пациентов с НМРЛ на момент постановки диагноза наблюдалось метастатическое заболевание. Отдаленные метастазы отрицательно влияют на варианты лечения, ответ и выживаемость [ 32 ] и являются основной причиной смерти от рака легких [ 33 ]. Метастазирование — это многоступенчатый процесс, включающий отсоединение раковых клеток, миграцию, инвазию и колонизацию в отдаленных участках. Поэтому терапевтические агенты и схемы, уменьшающие такой отличительный признак рака, имеют большое значение в терапии рака. Несмотря на продемонстрированную антиангиогенную активность DCA, это исследование не показало влияния DCA на метастазирование клеток LNM35, ксенотрансплантированных бестимусным мышам, получавшим перорально эффективную дозу. В этом исследовании клетки LNM35, ксенотрансплантированные путем подкожной инокуляции бестимусным мышам, вызвали 90% случаев метастазов в подмышечных лимфатических узлах, и DCA не смог снизить частоту и рост этих метастазов в лимфатических узлах. Линия клеток LNM35 была создана в 2000 году как первая линия клеток рака легких человека, имеющая лимфогенные метастатические свойства со 100% частотой после подкожной инъекции в боковой бок голых мышей [ 34 ]. Кроме того, DCA не показал никаких ингибирующих эффектов на миграционные и инвазивные свойства клеток LNM35 и A549 in vitro. Аналогичным образом сообщалось, что монотерапия DCA не была эффективна в снижении метастазов в легких из метастатических клеток рака груди, ксенотрансплантированных голым мышам [ 23 ].Комбинированная терапия является фундаментальным подходом в лечении рака. Сочетание различных противораковых препаратов позволяет воздействовать на различные основные сигнальные пути для усиления терапевтических преимуществ, избегания приобретенной резистентности и снижения тяжести побочных эффектов [ 35 ]. Химиотерапия играет неотъемлемую роль в лечении пациентов с НМРЛ. Обычно используется схема с платиной (цисплатин или карбоплатин) плюс паклитаксел, гемцитабин, доцетаксел, винорелбин, иринотекан или пеметрексед [ 36 ]. Неселективные характеристики химиотерапевтических агентов приводят к скромному увеличению выживаемости при значительной токсичности для пациента [ 37 ]. Это подчеркивает необходимость в более эффективных стратегиях для улучшения результатов лечения пациентов с минимальными побочными эффектами. В настоящем исследовании DCA не удалось усилить противораковый эффект камптотецина и гемцитабина в обеих линиях клеток НМРЛ. Кроме того, DCA не смог значительно усилить противораковые эффекты цисплатина в клеточной линии A549 in vitro, но он усилил цитотоксический эффект цисплатина в клеточной линии LNM35, что отражает роль генетического фона раковых клеток в определении пути гибели клеток, вызванного препаратами. Ким и др. сообщили, что клетки A549 имеют более низкую скорость аэробного гликолиза по сравнению с клетками H460 из-за дифференциальной экспрессии некоторых метаболических ферментов [ 38 ]. Аэробный гликолиз при раке был связан с химиорезистентностью, и ингибирование связанных путей было предложено в качестве механизма преодоления такой резистентности. Например, сверхэкспрессия PDK4 при раке мочевого пузыря высокой степени злокачественности заставляет совместное введение DCA с цисплатином вызывать резкое снижение роста опухоли по сравнению с DCA или цисплатином по отдельности [ 39 ]. Аналогичным образом, введение DCA с паклитакселом было описано как успешный подход к преодолению резистентных к паклитакселу клеток НМРЛ из-за сверхэкспрессии PDK2 [ 40 ]. Кроме того, Галгамува и др. заявили, что предварительное лечение DCA значительно ослабило нефротоксичность, вызванную цисплатином у мышей, сохранив противораковые эффекты цисплатина [ 41 ].Открытие таргетной терапии помогло врачам адаптировать варианты лечения для пациентов с НМРЛ. Было разработано много таргетных препаратов, которые стали частью первой линии лечения НМРЛ, например, гефитиниб и эрлотиниб, которые считаются первым поколением EGFR-TKi [ 42 ]. Гефитиниб и эрлотиниб были одобрены более 10 лет назад для лечения пациентов с прогрессирующим мутантным EGFR НМРЛ, не получавших химиотерапию, в качестве первой линии лечения. Они также используются в качестве второй линии терапии после неудачи химиотерапии [43]. Некоторые отчеты показали, что эрлотиниб имеет хорошую эффективность у пациентов с НМРЛ с диким типом EGFR [ 44 ]. Поддерживающая доза может принести пользу этим пациентам после химиотерапии на основе платины, которая считается основной терапией при НМРЛ с диким типом EGFR [ 45 ]. Несмотря на значительные преимущества, у многих пациентов после 10–14 месяцев лечения развилась терапевтическая резистентность из-за вторичной мутации в гене EGFR [ 46 ].В этом исследовании мы стремились изучить способность DCA сенсибилизировать линии клеток NSCLC дикого типа EGFR при сочетании с гефитинибом или эрлотинибом in vitro. DCA значительно усилил ингибирующий эффект гефитиниба и эрлотиниба на жизнеспособность клеток A549 и LNM35. Это исследование также показало аддитивные эффекты на рост колоний LNM35 при сочетании DCA с гефитинибом или эрлотинибом в течение семи дней лечения. Более того, эта комбинация оказала синергическое действие на рост колоний A549 после четырнадцати дней лечения. Кроме того, все эти протоколы комбинирования привели к существенному снижению клеточной плотности отдельных колоний как A549, так и LNM35. В этом контексте сообщалось, что DCA с гефитинибом или эрлотинибом синергически подавляет жизнеспособность и способность к образованию колоний мутантных клеток EGFR (NCI-H1975 и NCI-H1650) из-за синергического эффекта в продвижении апоптоза. В клетках дикого типа EGFR (A549 и NCI-H460) они показали, по сравнению с индивидуальными обработками, что комбинация вызывала повышенное значение фракции, затронутой (Fa), в жизнеспособности клеток, не достигая уровня синергизма в клетках дикого типа EGFR (A549 и NCI-H460), и эта комбинация не подавляла значительно образование колоний этих линий клеток [ 47 ]. Различия в экспериментальных условиях между вышеупомянутым отчетом и нашим исследованием могут объяснить такие переменные результаты. В своем клоногенном анализе исследователи обрабатывали отдельные клетки в течение трех последовательных дней, а затем инкубировали в среде без лекарственных средств в течение 15 дней для формирования колоний; Однако в наших экспериментах клетки сначала инкубировали в течение десяти дней для формирования колоний, а затем подвергали обработке в течение семи и четырнадцати дней.Подводя итог, можно сказать, что это исследование продемонстрировало, что DCA является перспективным противораковым средством для лечения НМРЛ, подавляя жизнеспособность клеток и рост колоний клеток НМРЛ in vitro, а также рост опухолей у эмбрионов цыплят CAM и голых мышей, в которых также оценивалась безопасность этого средства. DCA подавляет способность эндотелиальных клеток образовывать капилляроподобные структуры и прорастать in vitro, что позволяет предположить ингибирование ангиогенеза как потенциальный механизм противоракового эффекта. Это исследование также выявило потенциальную ценность DCA в сочетании с гефитинибом или эрлотинибом in vitro. Результаты этого исследования прокладывают путь для подтверждения влияния комбинации DCA с гефитинибом или эрлотинибом на рост опухоли in vivo, в дополнение к исследованию влияния DCA в сочетании с EGFR-TKi второго и третьего поколения.

4. Материалы и методы

4.1. Культура клеток и реагенты

Клетки NSCLC, A549 и LNM35, поддерживались в среде RPMI-1640 (Gibco, Paisley, UK) в увлажненном инкубаторе при 37 °C и 5% CO2 . Среда была дополнена 1% раствора пенициллина-стрептомицина (Hyclone, Cramlington, UK) и 10% фетальной бычьей сыворотки (Hyclone, Cramlington, UK). Эндотелиальные клетки пупочной вены человека (HUVEC) поддерживались в полном наборе сред EndoGRO TM -VEGF (Merck Millipore, Massachusetts, USA) в увлажненном инкубаторе при 37 °C и 5% CO2 в колбах, покрытых 0,2% желатином. Культуральную среду всех клеток меняли каждые 3 дня, а клетки пересевали один раз в неделю, когда культура достигала 95% конфлюэнтности для раковых клеток и 80% для HUVEC.Натрий DCA, цисплатин, камптотецин, гемцитабин HCl, эрлотиниб HCl и гефитиниб были приобретены у Sigma-Aldrich (Сент-Луис, Миссури, США). DCA был свежерастворен в воде HyPure (Hyclone, Крамлингтон, Великобритания) перед началом любого эксперимента для приготовления исходного раствора 1 М, который затем был разбавлен до требуемых концентраций для лечения.

4.2 Жизнеспособность клеток

Клетки A549 и LNM35 высевали с плотностью 5000 клеток/лунку в 96-луночный планшет. Через 24 часа клетки обрабатывали возрастающей концентрацией DCA (3,125–100 мМ) в двух повторностях в течение 24, 48 и 72 часов, тогда как контрольные клетки обрабатывали лекарственным средством (вода Hypure), смешанным со средой. В указанные временные точки использовали анализ жизнеспособности люминесцентных клеток CellTiter-Glo ® (Promega Corporation, Мэдисон, Висконсин, США) для определения влияния DCA на жизнеспособность клеток путем количественной оценки АТФ, которая будет пропорциональна количеству метаболически активных клеток. Люминесцентный сигнал измеряли с помощью люминометра GloMax ® (Promega Corporation, Мэдисон, Висконсин, США). Жизнеспособность клеток была представлена ​​в процентах (%) путем сравнения жизнеспособности клеток, обработанных DCA, с контрольными клетками, жизнеспособность которых предполагалась равной 100%.Во втором наборе экспериментов клетки обрабатывали в течение 48 ч возрастающей концентрацией гефитиниба и эрлотиниба (5–80 мкМ). Кроме того, клетки обрабатывали в течение 48 ч комбинацией DCA и других противораковых агентов, а именно цисплатина, камптотецина, гемцитабина, гефитиниба и эрлотиниба. Жизнеспособность клеток определяли с помощью анализа люминесцентной жизнеспособности клеток CellTiter-Glo ® и люминометра GloMax ® (Promega Corporation, Мэдисон, Висконсин, США). Жизнеспособность представляли в процентах (%) путем сравнения жизнеспособности обработанных лекарством клеток с контрольными клетками.

4.3 Клоногенный анализ

В 6-луночный планшет высевали клетки A549 и LNM35, соответственно, по 50 и 100 клеток на лунку. Клетки выдерживали для роста в колонии в течение 7–10 дней во влажной атмосфере при 37 °C и 5% CO2 , при этом среду меняли каждые три дня. Образованные колонии обрабатывали каждые 3 дня в течение 7 дней возрастающими концентрациями DCA (6,25–50 мМ). После этого колонии промывали три раза 1× PBS, фиксировали и окрашивали в течение 2 часов 0,5% кристаллическим фиолетовым, растворенным в 50% метаноле ( об. / об. ). Наконец, колонии промывали 1× PBS и фотографировали, и подсчитывали колонии с более чем 50 клетками. Данные представлены в виде процента колоний (%) путем сравнения колоний, обработанных DCA, с контрольными колониями. Плотность клеток колоний оценивали путем фотографирования колоний в каждой группе с использованием инвертированного фазово-контрастного микроскопа (4×).Во втором наборе экспериментов сформированные колонии обрабатывались каждые 3 дня в течение 7 или 14 дней комбинацией DCA и гефитиниба или DCA и эрлотиниба. Данные представлены в виде процента колоний (%) путем сравнения колоний, обработанных препаратом, с контрольными колониями.

4.4 Анализ роста опухоли in ovo

Оплодотворенные яйца леггорнов инкубировались в инкубаторе для яиц, установленном на температуру 37,5 °C и влажность 50% в течение первых 3 дней после оплодотворения. На 3-й день эмбрионального развития (E3) САМ удалялся путем просверливания небольшого отверстия в яичной скорлупе напротив круглого, широкого конца с последующей аспирацией ~1,5–2 мл альбумина с помощью шприца объемом 5 мл с иглой 18G. Затем в яичной скорлупе над САМ вырезалось небольшое окно с помощью тонких ножниц и заклеивалось полупроницаемой клейкой пленкой (Suprasorb ® F). Яйца снова содержались в инкубаторе до 9-го дня эмбрионального развития (E9), на котором раковые клетки были трипсинизированы, центрифугированы и суспендированы в 80% матрице Matrigel ® (Corning, Bedford, UK) для получения 1 × 10 6 клеток/100 мкл для A549 и 0,3 × 10 6 клеток/100 мкл для LNM35. 100 мкл инокулята добавляли на САМ каждого яйца, в общей сложности 10–13 яиц на состояние. На 11-й день эмбрионального развития (E11) образовавшиеся опухоли обрабатывали местно, капая 100 мкл DCA, приготовленного на 0,9% NaCl для первой группы или лекарственного носителя для контрольной группы. Лечение повторяли на E13 и E15. Все описанные шаги выполняли в асептических условиях. Наконец, на 17-й день эмбрионального развития (E17) эмбрионы были гуманно умерщвлены путем нанесения 10–30 мкл пентобарбитона натрия (300 мг/мл, Jurox, Окленд, Новая Зеландия). Опухоли были осторожно извлечены из нормальных верхних тканей CAM, промыты 1× PBS и взвешены для определения влияния DCA на рост опухоли. Данные представлены в виде сравнений среднего веса опухолей в контрольной группе и группе, обработанной DCA. Токсичность препарата оценивалась путем сравнения процента живых эмбрионов в контрольной и обработанной DCA группах в конце эксперимента. Живые эмбрионы определялись путем проверки произвольных движений эмбрионов в дополнение к целостности и пульсации кровеносных сосудов.Этот анализ представляет собой рандомизированный открытый анализ, который был проведен в соответствии с протоколом, одобренным комитетом по этике животных в Университете Объединенных Арабских Эмиратов. Согласно Европейской директиве 2010/63/EU о защите животных, используемых в научных целях, эксперименты с использованием куриных эмбрионов на E18 и до нее не требуют одобрения со стороны Комитета по уходу и использованию институциональных животных (IACUC).

4.5 Анализ роста опухоли и метастазирования

Эксперименты на животных проводились в соответствии с протоколом, одобренным комитетом по этике животных университета ОАЭ в марте 2019 года (код протокола ERA_2019_5872). Шести-восьминедельные бестимусные самцы мышей NMRI nude (nu/nu, Charles River, Германия) содержались в ламинарных шкафах с фильтрованным воздухом и обрабатывались в асептических условиях. Клетки A549 (5 × 10 6 клеток/200 мкл PBS) и клетки LNM35 (0,4 × 10 6 клеток/200 мкл PBS) вводились подкожно в боковой бок мышей nude. Через десять дней, когда опухоли достигли объема приблизительно 50 мм 3 , животные с ксенотрансплантатами A549 были случайным образом разделены на три группы по 9–10 мышей в каждой. Эти группы лечились перорально каждый день (5 дней в неделю) DCA 50 мг/кг или 200 мг/кг или лекарственным растворителем в течение 38 дней. С другой стороны, животные с ксенотрансплантатами LNM35 лечились перорально каждый день (5 дней в неделю) DCA 200 мг/кг или лекарственным растворителем в течение 10 дней и DCA 500 мг/кг или лекарственным растворителем в течение 24 дней. Размеры опухолей и вес животных проверялись каждые три или четыре дня. Кроме того, физические признаки и поведение проверялись каждый день. Объем опухоли рассчитывался по формуле V = L × W 2 × 0,5, где L представляет собой длину, а W - ширину опухоли. В конце экспериментов животных анестезировали и умерщвляли путем смещения шейных позвонков, а опухоли удаляли и взвешивали. Влияние DCA на рост опухоли было представлено путем сравнения среднего веса опухоли в конце эксперимента между контрольной группой и группой, получавшей DCA. Его также оценивали путем сравнения объема опухоли между контрольной и обработанной DCA группами на протяжении всего эксперимента. Образцы крови собирали у каждой мыши и анализировали с помощью SCIL VET ABC™ Animal Blood Counter для полного анализа крови. Кроме того, плазму крови отделяли центрифугированием для биохимического анализа. Для изучения влияния DCA на метастазирование подмышечные лимфатические узлы вырезали и взвешивали у животных с ксенотрансплантатами LNM35 в конце эксперимента.

4.6 Анализ формирования сосудистой трубки

Matrigel ® Matrix (Corning, Bedford, UK) размораживали и добавляли 40–50 мкл в лунки 96-луночного планшета для покрытия. Для того чтобы Matrigel затвердел, планшет держали во влажном инкубаторе при 37 °C и 5% CO2 в течение 1 ч. HUVEC трипсинизировали и высевали на покрытый планшет с плотностью 2,5 × 104 клеток /100 мкл/лунку в присутствии и в отсутствие различных концентраций DCA. Через 8 ч инкубации сети трубок в разных лунках фотографировали с помощью инвертированного фазово-контрастного микроскопа. Влияние DCA на способность HUVEC образовывать капилляроподобные структуры оценивали путем измерения общей длины сформированных трубок в контрольных и обработанных DCA лунках. Общая длина трубок измерялась вручную и с помощью программного обеспечения для онлайн-анализа изображений, разработанного Wimasis ( https://www.wimasis.com/en/products/13/WimTube - дата доступа 1 марта 2019 г.). Влияние различных концентраций DCA на жизнеспособность HUVEC определялось с помощью анализа жизнеспособности клеток CellTiter-Glo ® Luminescent Cell Viability (Promega Corporation, Мэдисон, Висконсин, США), как ранее описано в разделе о жизнеспособности клеток.

4.7. Анализ прорастания сфероидов HUVEC

Сфероиды HUVEC были приготовлены путем первого окрашивания клеток путем инкубации 190 000 клеток с 2 мкМ раствором красителя CellTracker TM Green CMFDA (Invitrogen Molecular probes, Paisley, UK) в течение 30 мин в увлажненном инкубаторе, установленном на 37 °C и 5% CO2 , с последующим центрифугированием в течение 5 мин и удалением супернатанта. Осадок HUVEC был суспендирован в дополненной среде HUVEC (5 мл), смешанной с раствором метоцела (1,25 мл), который должен быть приготовлен ранее [ 48 ]. Затем 25 мкл клеточной суспензии пипеткой наносили на крышку чашки Петри. Примерно 50 капель пипеткой наносили в каждую чашку Петри. Наконец, капли держали перевернутыми в течение 24 ч в увлажненном инкубаторе, установленном на 37 °C и 5% CO2 .Образованные сфероиды в каждой чашке (~50 сфероидов) собирали отдельно с 1× PBS и центрифугировали при 150× g в течение 5 мин. Тем временем рабочий раствор коллагена I готовили на льду путем осторожного смешивания исходного коллагена I из хвоста крысы (1500 мкл) (Millipore, MA, США) с 10× средой 199 (150 мкл) (Sigma-Aldrich, Saint Louis, MO, США) и ледяным стерильным 1N NaOH (34 мкл), который приобрел красный цвет. Каждый сфероидный осадок покрывали слоем раствора метоцела, содержащего 4% FBS (0,25 мл), рабочего раствора коллагена I (0,25 мл) и 60 мкл базальной среды или VEGF 30 нг/мл или DCA 25 мМ или их комбинации. Сразу после осторожного перемешивания смесь добавляли в предварительно нагретый 24-луночный планшет и инкубировали в увлажненном инкубаторе при температуре 37 °C и 5% CO2 в течение 24 часов, что позволяло полимеризовать коллаген и прорасти сфероидам. Через 24 часа сфероиды были захвачены с помощью инвертированного микроскопа с 20-кратным увеличением. Длина проростков в 12 сфероидах в каждом состоянии была измерена с помощью ImageJ.

4.8. Анализ подвижности при заживлении ран

Клетки A549 и LNM35 высевали с плотностью 1 × 10 6 клеток/лунку в 6-луночный планшет. Через 24 часа с помощью наконечника объемом 200 мкл делали царапину через сливающийся монослой. После этого клетки дважды промывали 1× PBS с последующим добавлением свежей среды с лекарственным носителем или DCA. В верхней части планшета отмечали два места для мониторинга уменьшения размера раны с течением времени с использованием инвертированного микроскопа при объективе 4× (Olympus 1X71, Токио, Япония). Планшеты инкубировали во влажной атмосфере при 37 °C и 5% CO 2 , а ширину раны измеряли через 0, 2, 6 и 24 часа после инкубации. Расстояние миграции выражали как среднее значение разницы между измерениями в нулевой момент времени и в периоды времени 2, 6 и 24 часа.

4.9. Анализ камеры вторжения Матригеля

Следуя протоколу производителя (Corning, Bedford, MA, USA), в нижние камеры добавляли 0,5 мл среды RPMI-1640 с добавлением 10% FBS. После этого раковые клетки высевали с плотностью 1 × 10 5 клеток/0,5 мл в верхние камеры в среде без FBS в присутствии и отсутствии DCA. Планшет держали в увлажненном инкубаторе при 37 °C и 5% CO 2 в течение 24 часов. Инвазивные клетки разрушают Матригель и проходят через 8 мкм поры вставки. Непроникающие клетки верхних камер удаляли, осторожно протирая область ватным тампоном. Затем полупроницаемую мембрану удаляли с помощью очень тонких ножниц. Инвазивные клетки были обнаружены с помощью анализа жизнеспособности клеток CellTiter-Glo ® Luminescent Cell Viability (Promega Corporation, Мэдисон, Висконсин, США), ранее описанного в разделе жизнеспособности клеток. Влияние DCA на клеточную инвазию было представлено в процентах (%) путем сравнения инвазирующих клеток в присутствии DCA с контролем.

4.10 Статистический анализ

За исключением анализа in ovo и экспериментов на голых мышах, каждый эксперимент проводился не менее трех раз. Данные выражены как среднее значение ± SEM Статистический анализ проводился с использованием GraphPad Prism версии 8.3.1 для Windows (GraphPad Software, Сан-Диего, Калифорния, США). Для оценки разницы между двумя группами использовался непарный t -тест. Для сравнения 3 или более групп с контрольной группой использовался однофакторный дисперсионный анализ с последующим тестом множественного сравнения Даннетта. Кроме того, для комбинированных экспериментов использовался однофакторный дисперсионный анализ с последующим тестом множественного сравнения Тьюки. * p < 0,05, ** p < 0,01, *** p < 0,001 и **** p < 0,0001 указывают на значимые различия.

Вклады авторов

Концептуализация, SA; методология, SA, AA-A., SS, KA, JY и AN; валидация, SA, AA-A., SS, KA, JY и AN; формальный анализ, SA и AA-A.; расследование, SA, AA-A., SS, KA, JY и AN; курирование данных, SA; написание — подготовка первоначального черновика, SA и AA-A.; написание — рецензирование и редактирование, SA, AA-A., SS, KA, JY и AN; визуализация, SA, AA-A. и AN; руководство, SA; администрирование проекта, SA; получение финансирования, SA Все авторы прочитали и согласились с опубликованной версией рукописи.

Финансирование

Это исследование частично финансировалось за счет гранта Центра медицинских наук имени Зайеда при Университете Объединенных Арабских Эмиратов, № 31R136.

Дихлорацетат вызывает апоптоз и остановку клеточного цикла в клетках колоректального рака

Дихлорацетат вызывает апоптоз и остановку клеточного цикла в клетках колоректального рака


оригинал статьи: https://www.sci-hub.ru/10.1038/sj.bjc.6605701

.М. Мадхок*, 1 , С. Йелури 1 , С.Л. Перри 1 , Т.А. Хьюз 2 и Д.Г. Джейн 1

1 Секция трансляционной анестезии и хирургии, Университет Лидса, 7 этаж здания клинических наук, Университетская больница Св. Джеймса, Лидс, Великобритания
2 Институт молекулярной медицины Лидса, Университет Лидса, Университетская больница Св. Джеймса, Лидс, Великобритания

Адрес для переписки: д-р Б. М. Мадхок; Электронная почта: umbm@leeds.ac.uk

Исправлено: 23 марта 2010 г.
Принято: 26 апреля 2010 г.
Опубликовано: 18 мая 2010 г.

Абстрактный

Фон
Раковые клетки сильно зависят от гликолиза. Нашей целью было определить, приведет ли переключение метаболизма с гликолиза на митохондриальное дыхание к снижению роста преимущественно колоректальных раковых клеток по сравнению с нормальными клетками, и изучить лежащие в основе этого механизмы.

Методы.
Репрезентативные линии клеток колоректального рака и нераковых клеток обрабатывались дихлорацетатом (ДХА), ингибитором киназы пируватдегидрогеназы.

Результаты
Дихлорацетат (20 мМ) не снижал рост нераковых клеток, но вызывал значительное снижение пролиферации раковых клеток ( P = 0,009), что было связано с апоптозом и остановкой клеточного цикла в фазе G 2.  Наибольший апоптотический эффект был очевиден в метастатических клетках LoVo, в которых DCA индуцировал до десятикратного увеличения количества апоптотических клеток через 48 ч. Наиболее выраженный арест в фазе G 2  был очевиден в хорошо дифференцированных клетках HT29, в которых DCA вызывал восьмикратное увеличение количества клеток в фазе G 2  через 48 ч. Дихлорацетат снижал уровень лактата в ростовой среде и индуцировал дефосфорилирование субъединицы E1 α  пируватдегидрогеназного комплекса во всех клеточных линиях, но внутренний митохондриальный мембранный потенциал был снижен только в раковых клетках ( P = 0,04).

Выводы
Ингибирование киназы пируватдегидрогеназы ослабляет гликолиз и облегчает митохондриальное окислительное фосфорилирование, что приводит к снижению роста клеток колоректального рака, но не нераковых клеток.


Ключевые слова: дихлорацетат, колоректальный рак, пируватдегидрогеназа, киназа пируватдегидрогеназы
British Journal of Cancer (2010) 102, 1746 – 1752, www.bjcancer.com
doi: 10.1038/sj.bjc.6605701

© 2010 Cancer Research UK

ВВЕДЕНИЕ

Колоректальный рак является третьим по распространенности видом рака в мире и четвертой по значимости причиной смерти от рака (Shike et al, 1990). В 2007 году колоректальный рак стал причиной 17,1 смертей на 100 000 человек в Соединенном Королевстве (UK Bowel Cancer Statistics, 2009). Несмотря на недавние достижения, прогноз для пациентов с запущенным и метастатическим колоректальным раком остается неблагоприятным. Нацеливание на метаболизм опухоли для терапии рака является быстро развивающейся областью (Pan and Mak, 2007). Ранние наблюдения относительно метаболических различий между раковыми и нормальными клетками были сделаны Отто Варбургом, который показал, что раковые клетки по своей природе зависят от гликолиза для производства химической энергии (Warburg, 1956). В настоящее время появляется все больше доказательств того, что этот повышенный гликолиз является результатом влияния множественных молекулярных путей, включая адаптивные ответы на гипоксическую микросреду опухоли, онкогенную сигнализацию и митохондриальную дисфункцию (Gatenby и Gillies, 2004; Gillies и Gatenby, 2007; Wu et al, 2007). Гликолитический фенотип дает раковым клеткам преимущества в росте, противодействуя апоптозу и способствуя распространению опухоли и метастазированию (Yeluri et al, 2009).

Ключевым регулятором клеточного метаболизма является пируватдегидрогеназа (ПДГ). Пируватдегидрогеназа преобразует пируват, полученный в результате гликолиза, в ацетил-КоА, который окисляется в цикле трикарбоновых кислот в митохондриях. Активность пируватдегидрогеназы строго регулируется ингибирующим фосфорилированием киназой пируватдегидрогеназы (ПДК). Фосфорилирование происходит на субъединице E1  α ПДГ (ПДГЭ1 α ) в трех местах: Ser 232 , Ser 293 и Ser 300  (Rardin et al, 2009). Дихлорацетат (DCA) является ингибитором всех четырех изоферментов PDK(1–4) (Stacpoole, 1989), и недавно было показано, что он снижает рост линий клеток рака легких, эндометрия и молочной железы (Bonnet et al, 2007; Wong et al, 2008; Sun et al, 2009). Сообщалось, что он снижает рост этих раковых клеток в основном за счет снижения ингибирующего фосфорилирования PDH, тем самым способствуя окислительному фосфорилированию митохондрий и вызывая апоптоз через митохондриальные, NFAT-Kv 1.5 и p53-активируемый модулятор апоптоза (PUMA)-опосредованные пути.

Было обнаружено, что клетки колоректального рака подвергаются повышенному гликолизу (Bi et al, 2006), а микроокружение опухоли является гипоксическим и ацидотическим, в основном из-за плохо развитого кровоснабжения (Dewhirst et al, 1989; Milosevic et al, 2004). Ранее мы показали, что это особенно верно для более агрессивного фенотипа (Thorn et al, 2009), и экспрессия важных маркеров гипоксии увеличивается при колоректальном раке, особенно на инвазивном крае (Rajaganeshan et al, 2008, 2009). Целью данного исследования было изучение влияния DCA на рост клеток колоректального рака в попытке изучить ингибирование PDK как новую терапевтическую стратегию против колоректального рака.

Материалы и методы

Клеточные культуры
Все клеточные линии были приобретены в Американской коллекции типовых культур (Манассас, Вирджиния, США) или Европейской коллекции клеточных культур (Солсбери, Уилтшир, Великобритания): HB2 (клетки эпителия молочной железы неракового происхождения), 293 (клетки эпителия из почки эмбриона человека), HT29 (высокодифференцированная первичная колоректальная аденокарцинома), SW480 (низкодифференцированная первичная колоректальная аденокарцинома) и LoVo (метастатический левый надключичный лимфатический узел из колоректальной аденокарциномы). Клетки 293 и HB2 содержались в среде DMEM, HT29 и SW480 — в среде RPMI 1640, а LoVo — в среде F12 (все от Invitrogen, Карлсбад, Калифорния, США), дополненной 10% эмбриональной телячьей сыворотки, в инкубаторе с влажностью 37°C и 5% CO2  . Для экспериментов в гипоксических условиях мы инкубировали клетки в увлажненном гипоксическом инкубаторе (1% O2 , 5% CO2 , 94% N2 , 37°C). Дихлорацетат натрия (Specials Lab, Prudhoe, Великобритания) был предоставлен фармацевтическим отделением больницы St. James's University Hospital, Лидс, Великобритания.

Анализы МТТ
Клетки (1 × 10 4 ) на лунку высевали в 96-луночные планшеты для культивирования тканей. После ночной инкубации мы заменили среду на свежую среду, содержащую возрастающие дозы DCA (0, 10, 15, 20, 30, 50 и 100 мМ). Через 24 и 48 ч инкубации мы провели анализ МТТ, заменив среду на 50  мкл 1 мг мл -1  раствора МТТ, и планшеты инкубировали в темноте в течение 3 ч. Затем раствор МТТ удаляли, а темно-синие осадки формазана растворяли в 100  мкл пропан-1-ола. Оптическую плотность измеряли с помощью микропланшетного ридера (Opsys MR; Dynex Technologies Ltd, Worthing, West Sussex, UK) при 570 нм.

Анализы аннексина V и 7-AAD
Клетки высевали в колбы для культивирования тканей площадью 25 см2 и  инкубировали в течение ночи в стандартных условиях. Среду заменяли свежей средой, содержащей ряд доз DCA (0, 10, 20 и 50 мМ). Анализ проточной цитометрии проводили после 24 и 48 ч инкубации. Клетки дважды промывали холодным PBS и ресуспендировали в 1 × связывающем буфере (BD Bioscience, Франклин Лейкс, Нью-Джерси, США) при концентрации 5 × 106 клеток  на мл. 100  мкл раствора (5 × 105 клеток  ) переносили в культуральные пробирки объемом 5 мл. Эти клетки окрашивали 5  мкл аннексина V-FITC и 10  мкл 7-AAD (BD Bioscience), осторожно встряхивали и инкубировали при комнатной температуре в течение 15 мин в темноте. После этого в каждую пробирку добавляли 400  мкл однократного связывающего буфера и анализировали в течение часа на проточном цитофлуориметре LSR II (BD Bioscience).

Анализы с йодидом пропидия
Клетки размножали, как указано для анализа апоптоза. Использовали дихлорацетат (50 мМ) и сравнивали с контролем-носителем. После сбора мы ресуспендировали клетки в 350  мкл PBS в концентрации 0,5–1,0 × 10 6  клеток на мл. К суспензии клеток добавляли 100  мкл 0,25 мг мл -1  йодида пропидия (PI)/5% Triton (Sigma, Сент-Луис, Миссури, США). Затем добавляли 50  мкл 1 мг мл -1  рибонуклеазы A (Sigma). Пробирки с образцами тщательно встряхивали и инкубировали в течение 10 мин в темноте при комнатной температуре. Проточную цитометрию проводили на проточном цитометре LSR II (BD Bioscience), а данные анализировали с помощью программного обеспечения FlowJo (FlowJo, Эшленд, штат Орегон, США).

Измерения лактата
Измерения лактата в питательных средах проводились отделением химической патологии в General Infirmary, Leeds Teaching Hospitals NHS Trust. Клетки инкубировали в колбах площадью 25 см2 в  течение ночи в нормоксии. На следующий день среду заменяли на ряд доз DCA (0, 10, 20 и 50 мМ). Через 48 часов инкубации мы собрали 2 мл среды во фторидные пробирки и немедленно перенесли в лабораторию химической патологии. Во время переноса пробирки хранились на льду. Уровни лактата измеряли с помощью автоматического анализатора (система Advia 1200 Chemistry; Siemens Healthcare Diagnostics, Кэмберли, Суррей, Великобритания).

Анализы TMRM
Клетки обрабатывали DCA, как описано для анализа апоптоза. После 24 и 48 ч инкубации мы промывали клетки в PBS и суспендировали 1 × 10 6  клеток на мл в буферном солевом растворе Хэнкса с 50 нМ метиловым эфиром тетраметилродамина (TMRM) (Invitrogen). 100  мкл клеточной суспензии (1 × 10 5  клеток на лунку) переносили в непрозрачные 96-луночные планшеты, инкубировали в течение 30 мин и измеряли флуоресценцию при 530/620 нм при 37 °C с помощью планшетного ридера (Mithras LB 40; Berthold Technologies, Bad, Wildbad, Германия).

Вестерн-блоттинг
Клетки обрабатывали DCA, как описано выше. Через 8 ч обработки мы извлекали белки из клеток в буфере Лэммли (2% SDS, 10% глицерина, 0,7% 2-меркаптоэтанола, 0,05% бромфенолового синего и 0,5 M Tris-HCl). Лизаты разделяли электрофорезом на гелях NuPAGE Novex 12% Bis-Tris (Invitrogen) в буфере MOPS-SDS (Invitrogen). Белки переносили на поливинилиденфторидную мембрану (GE Healthcare, Chalford St Giles, Bucks, UK). Мембрану блокировали в течение 1 ч при комнатной температуре в 5% обезжиренном молоке в TBS-T (трис-буферный физиологический раствор с 0,1% Tween). Затем мембрану зондировали первичными антителами в 1% обезжиренном молоке в TBS-T в течение 90 мин, промывали в TBS-T, а затем зондировали соответствующим вторичным антителом, конъюгированным с пероксидазой хрена (HRP), в течение 60 мин. Первичные антитела: кроличьи поликлональные фосфодетектные анти-PDH-E1 α  (pSer 293 ), 1 : 500 (AP1062; EMD Chemicals, Дармштадт, Германия), и мышиные моноклональные анти-PDHE1 α , 1 : 500 (459400; Invitrogen). Вторичные антитела антикроличьи или антимышиные конъюгаты HRP, 1 : 1000 (Dako, Glostrup, Дания). Белки визуализировали с помощью хемилюминесцентного субстрата Supersignal West Pico или Femto (Pierce Biotechnology, Рокфорд, Иллинойс, США) и системы Chemidoc XRS (Bio-Rad, Геркулес, Калифорния, США).  В качестве контроля нагрузки использовали β -актин.

Статистический анализ
Данные проточной цитометрии были получены с использованием специального программного обеспечения, BD FACSDiva 6.0 и программного обеспечения FlowJo. Статистический анализ был выполнен с использованием SPSS для Windows (SPSS версии 15.0, Чикаго, Иллинойс, США). Различия между группами, получавшими DCA, и контрольными группами, получавшими плацебо, оценивались с использованием  U -критерия Манна-Уитни и 95% доверительных интервалов разницы средних значений между двумя группами.  Значение P менее 0,05 считалось статистически значимым. Данные представлены как среднее значение по меньшей мере из трех независимых экспериментов, а планки погрешностей представляют собой стандартное отклонение среднего значения.

Результаты

DCA снижает пролиферацию раковых клеток, и эффект схож при нормоксии и гипоксии
Во-первых, мы хотели определить, ингибирует ли лечение DCA клеточную пролиферацию и будет ли дифференциальный ответ в раковых и нераковых клетках в нормоксических и гипоксических условиях. Что касается гипоксии, наша гипотеза заключалась в том, что влияние DCA будет особенно сильным при уровнях кислорода, которые недостаточны для поддержки дополнительного окислительного фосфорилирования. Все клеточные линии (HB2, 293, HT29, SW480 и LoVo) обрабатывали диапазоном доз DCA в течение 24–48 ч в нормоксических и гипоксических условиях. Относительное количество клеток оценивали с помощью анализов MTT.

Обработка возрастающими дозами DCA снижала клеточную пролиферацию дозозависимым образом (рисунок 1A-D). Вопреки нашим ожиданиям, профили снижения роста клеток были схожи при гипоксии и нормоксии. Через 24 и 48 ч до 20 мМ DCA не влияли на рост культур нераковых клеток, HB2 и 293. Однако 20 мМ DCA значительно снижали рост культур всех трех линий клеток колоректального рака ( P ⩽ 0,009). Эффект DCA был сильнее на слабодифференцированных клетках SW480 и метастатических клетках LoVo, чем на хорошо дифференцированных клетках HT29. Рост культур клеток LoVo, обработанных 20 мМ DCA, снижался до 40% по сравнению с клетками, обработанными контрольным раствором. Поскольку наблюдалась сравнительно небольшая разница в снижении роста культур, обработанных ДХА в условиях гипоксии и нормоксии, дальнейшие эксперименты проводились только в условиях нормоксии.

Рисунок 1. Дихлорацетат (20 мМ) не оказал значительного снижения роста культур нераковых клеток 293 и HB2, но вызвал значительное снижение роста культур всех клеток колоректального рака ( * P ⩽ 0,009). Клетки обрабатывали различными дозами DCA или контрольным раствором в условиях нормоксии ( A  и  C ) или гипоксии ( B  и  D ), а относительное количество жизнеспособных клеток оценивали через 24 ч ( A  и  B ) и 48 ч ( C  и  D ) с помощью анализа МТТ. Данные выражены в процентах от контроля (доза 0 мМ) ( *  – значительное различие относительно контроля – белый столбец (0 мМ)).

DCA способствует апоптозу в раковых клетках, щадя нераковые клетки
Далее мы хотели исследовать, было ли связано снижение роста культур при обработке DCA с индукцией апоптоза. Клетки обрабатывали диапазоном доз DCA (0, 10, 20 и 50 мМ) в течение 24 и 48 ч, и доля клеток, подвергающихся апоптозу, оценивалась путем обнаружения мембранного фосфатидилсерина с аннексином V-FITC. Клетки окрашивали аннексином V-FITC и витальным красителем 7-AAD и анализировали с помощью проточной цитометрии. Была дозозависимая индукция апоптоза в линиях раковых клеток через 24 и 48 ч обработки, с небольшим, если вообще, апоптозом, вызванным в нераковых клетках (рис. 2A и B). Наибольший эффект наблюдался в метастатических клетках LoVo; 50 мМ DCA вызвал десятикратное увеличение доли апоптотических клеток через 48 ч, тогда как наблюдалось семи- и пятикратное увеличение клеток HT29 и SW480 соответственно. Увеличение среднего процента от общего числа апоптотических клеток при 50 мМ DCA составило: 2,8 (95% ДИ: 2–3) в клетках HT29, 3,5 (95% ДИ: 2–5) в клетках SW480 и 21 (95% ДИ: 8–34) в клетках LoVo. Был минимальный апоптоз, индуцированный в 293 клетках даже при 50 мМ DCA, 0,2 (95% ДИ: −0,2 до 0,6). В клетках HB2 наблюдалось незначительное снижение процента апоптотических клеток при обработке 50 мМ DCA, −0,9 (95% ДИ: −2,2 до 0,4).

Рисунок 2. Дихлорацетат индуцировал дозозависимое увеличение процента апоптотической популяции в раковых клетках с минимальным апоптозом в нераковых клетках. Клетки обрабатывали дозами DCA в течение 24 ч ( A ) и 48 ч ( B ), окрашивали аннексином V-FITC и 7-AAD и анализировали с помощью проточной цитометрии. Точки данных представляют собой среднее значение (±sd) трех независимых экспериментов для 0 и 50 мМ DCA ( *  – значимое различие относительно контроля).

DCA вызывает остановку фазы G 2  в клетках колоректального рака, но не влияет на профиль клеточного цикла нераковых клеток 293
Мы также хотели изучить, было ли снижение роста культур при обработке DCA связано с индукцией остановки роста. Клетки обрабатывали 50 мМ DCA в течение 24 или 48 ч, а профили клеточного цикла анализировали с помощью проточной цитометрической оценки содержания ДНК после окрашивания PI. Обработка дихлорацетатом вызвала изменения в профилях клеточного цикла всех раковых клеток, но не повлияла на нераковые клетки. Изменения в профиле клеточного цикла были обнаружены через 24 ч обработки и сохранялись через 48 ч (рисунок 3A и B).


Рисунок 3. Дихлорацетат вызвал остановку фазы G 2  в клетках колоректального рака без влияния на профили клеточного цикла нераковых клеток; 293 и HB2. Клетки обрабатывали 50 мМ DCA или контрольным раствором в течение 24 ч ( A ) и 48 ч ( B ), окрашивали PI и анализировали с помощью проточной цитометрии. Для анализа статистической значимости мы сравнили среднюю долю клеток в каждой фазе клеточного цикла (G 1 , S и G 2 ) в клетках, обработанных DCA, со средней долей клеток в соответствующих фазах в необработанных клетках ( *  – значимое различие по сравнению с контролем).

После 48 ч обработки 50 мМ DCA наблюдалось восьмикратное увеличение клеток в фазе G 2  в клетках HT29 и SW480 и трехкратное увеличение клеток LoVo. Увеличение среднего процента всех раковых клеток в фазе G 2  составило: 21 (95% ДИ: 13–30) для клеток HT29, 19 (95% ДИ: 13–24) для клеток SW480 и 14 (95% ДИ: 10–21) для клеток LoVo; тогда как не было никакой разницы в клетках 293, 1 (95% ДИ: −4 до 7), и клетках HB2, −0,3 (95% ДИ: −9 до 9). Было соответствующее уменьшение клеток в фазе G 0 /G 1  во всех линиях раковых клеток. Интересно, что в клетках HT29 наблюдалось небольшое снижение, но в клетках SW480 и LoVo наблюдалось значительное увеличение доли клеток, считающихся находящимися в фазе S (см. раздел «Обсуждение»). Профиль клеточного цикла клеток 293 и HB2 изменился минимально при обработке DCA.

DCA снижает внеклеточный уровень лактата в питательной среде

Чтобы установить, коррелируют ли изменения в росте и апоптозе, вызванные DCA, со снижением гликолиза, мы измерили уровни лактата в ростовой среде. Молочная кислота является конечным продуктом гликолиза. Если бы DCA вызывал митохондриальное окислительное фосфорилирование, пируват декарбоксилировался бы до ацетил-КоА и не восстанавливался бы до лактата, следовательно, уровни лактата в ростовой среде снизились бы. Уровни лактата в ростовой среде всех клеточных линий измеряли через 48 ч обработки диапазоном доз DCA (рисунок 4). Уровни лактата определяли с помощью автоматического анализатора, который обычно используется для биохимического измерения уровней лактата; анализы основаны на колориметрической реакции, катализируемой лактатоксидазой. Обработка DCA снижала внеклеточные уровни лактата в ростовой среде дозозависимым образом во всех раковых и нераковых клеточных линиях.

Рисунок 4. Дихлорацетат снижал уровень лактата в питательной среде в зависимости от дозы как в раковых, так и в нераковых клетках. Клетки обрабатывались различными дозами DCA в течение 48 часов, а внеклеточные уровни лактата измерялись в питательной среде с помощью автоматического анализатора. Результаты выражены как относительные к контролю.

DCA деполяризует внутреннюю митохондриальную мембрану в клетках колоректального рака, но не в нераковых клетках
Чтобы проверить, была ли индукция апоптоза в раковых клетках при лечении DCA связана с усилением митохондриального окислительного фосфорилирования, мы измерили внутренний митохондриальный мембранный потенциал (ΔΨm). Эскалация митохондриального дыхания реактивировала бы цепь переноса электронов и снизила бы гиперполяризованный ΔΨm в раковых клетках. Клетки обрабатывали дозами DCA в течение 24 и 48 часов и окрашивали красителем TMRM, который позволяет проводить флуоресцентное измерение ΔΨm.

Как и в предыдущих экспериментах, эффект DCA был очевиден через 24 часа обработки и сохранялся через 48 часов (рисунок 5A и B). Обработка дихлорацетатом снизила гиперполяризованный ΔΨm во всех раковых клетках дозозависимым образом. Дихлорацетат не оказал никакого влияния на ΔΨm нераковых клеток HB2, тогда как, что удивительно, ΔΨm нераковых клеток 293 увеличился дозозависимым образом. Через 24 часа обработки 50 мМ DCA значительно снизили ΔΨm во всех раковых клетках; однако в клетках LoVo наблюдалось значительное снижение даже при 20 мМ DCA (рисунок 5A,  P = 0,02). В нераковых клетках 293 наблюдалась тенденция к увеличению ΔΨm при обработке DCA, хотя это не было статистически значимым ( P = 0,08). Через 48 ч лечения наблюдалось значительное снижение ΔΨm во всех раковых клетках и увеличение в 293 клетках при 20–50 мМ DCA (рисунок 5B,  P ⩽ 0,04).


Рисунок 5. Обработка дихлорацетатом снизила внутренний митохондриальный мембранный потенциал (ΔΨm) во всех раковых клетках, увеличила ΔΨm в нераковых клетках 293 и не оказала никакого влияния на ΔΨm в нераковых клетках HB2. Клетки обрабатывали дозами DCA в течение 24 ч ( A ) и 48 ч ( B ), окрашивали TMRM, а флуоресценцию измеряли при 530/620 нм при 37°C ( *  – значительная разница по сравнению с контролем).

Обработка DCA приводит к дефосфорилированию  субъединицы PDHE1 α
. Считается, что DCA ингибирует все четыре изофермента PDK и, следовательно, снижает фосфорилирование субъединицы PDHE1 α  , что, в свою очередь, приводит к активации комплекса PDH. Чтобы проверить, происходило ли дефосфорилирование PDHE1 α  при обработке DCA в используемых клеточных линиях, мы использовали вестерн-блот-анализы лизатов обработанных и необработанных клеток DCA. Во всех клеточных линиях обработка 20 мМ DCA в течение 8 ч вызвала резкое снижение сигнала фосфорилирования на сайте pSer 293  , но никаких изменений в уровнях общего PDHE1 α обнаружено не было  (рисунок 6). Фосфо-специфические антитела для двух других сайтов фосфорилирования, Ser 232  и Ser 300 , пока не доступны в продаже.

Рисунок 6. Обработка дихлорацетатом снизила фосфорилирование PDHE1 α  на сайте pSer 293  , не оказав влияния на уровни общего PDHE1 α  во всех исследованных клеточных линиях. Лизаты цельных клеток были приготовлены после обработки клеток 20 мМ DCA в течение 8 ч и из необработанных клеток, и были проведены анализы вестерн-блоттинга.

Обсуждение

Мы показали, что DCA вызывает дозозависимое снижение роста  in vitro  культур колоректальных раковых клеток и нераковых клеток. Однако раковые клетки были более чувствительны к DCA, при этом доза 20 мМ вызывала значительное ингибирование роста раковых клеток, но оказывала незначительное влияние на нераковые клетки. Мы показали, что компоненты этого дифференциального эффекта следующие: мощная индукция апоптоза и остановка клеточного цикла в раковых клетках, но не в нераковых клетках.

Эти выводы подтверждают простую модель дифференциальной чувствительности к DCA. Однако некоторые данные требуют дальнейшего обсуждения. Во-первых, 50 мМ DCA снизили рост культур нераковых клеток 293 и HB2, однако не наблюдалось увеличения апоптотических клеток или изменения профиля клеточного цикла этих клеток. Возможным объяснением этих результатов может быть то, что эта доза DCA привела к более медленному прохождению этих нераковых клеток через все стадии клеточного цикла, не изменяя относительных пропорций в пределах каждой стадии. Во-вторых, наши результаты указывают на то, что DCA вызвал остановку G 2  в клетках колоректального рака. Это контрастирует с предыдущими исследованиями, которые показали остановку G 1  или отсутствие изменений в профиле клеточного цикла при лечении DCA (Cao et al, 2008; Wong et al, 2008). Wong et al (2008) показали повышенную экспрессию PUMA во всех линиях клеток эндометриального рака, которые имели апоптотический ответ на DCA, и пришли к выводу, что эта активация p53 привела к остановке G 1.  Однако клетки колоректального рака в нашем исследовании остановились в фазе G 2  при лечении DCA, и мы не обнаружили никакой индукции p53 DCA в наших линиях клеток колоректального рака (данные не показаны). Интересно, что Cao et al (2008) обнаружили, что сочетание DCA и радиотерапии остановило клетки рака простаты в фазе G 2  , хотя DCA сам по себе не влиял на профиль клеточного цикла. В-третьих, в клетках SW480 и LoVo лечение DCA привело к увеличению доли клеток, которые, как считается, находятся в фазе S. Это предполагает увеличение пролиферации, а также индукцию апоптоза. Аналогичное открытие было сообщено Wong et al (2008) в одной из нескольких протестированных клеток эндометриального рака. Альтернативное объяснение заключается в том, что часть клеток, находящихся в «S-фазе» после обработки линий раковых клеток DCA, на самом деле представляют собой апоптотические клетки в области «sub-G2 » , как это было ранее описано для клеток лимфомы (Klucar и Al-Rubeai, 1997).

Изменения в клеточном метаболизме при лечении DCA
DCA, по-видимому, подавлял выработку молочной кислоты из пирувата как в раковых, так и в нераковых клетках. Кроме того, лечение DCA приводило к дефосфорилированию PDHE1 α и, следовательно, активации PDH во всех исследованных клеточных линиях. Следовательно, основа дифференциального эффекта DCA на раковые и нераковые клетки может заключаться в его влиянии на митохондриальную функцию. Лечение DCA снижало высокий ΔΨm всех раковых клеток, но не нераковых клеток. Это говорит о том, что DCA, ингибируя PDK и, следовательно, активируя PDH, стимулирует митохондриальное дыхание, что приводит к деполяризации внутренней митохондриальной мембраны, и индуцирует апоптоз по проксимальному митохондриальному пути, как описано в предыдущих исследованиях (Bonnet et al, 2007; Cao et al, 2008; Wong et al, 2008). Индукция апоптоза и изменения в митохондриальной функции были наиболее выражены в высокоинвазивных и метастатических клетках LoVo, чем в менее инвазивных клетках HT29 и SW480. Это может иметь клинические последствия для лечения метастатического колоректального рака, поскольку обычно именно высокоинвазивные метастатические раковые опухоли наиболее устойчивы к традиционной химиотерапии и могут быть наиболее чувствительны к ингибированию PDK. В поддержку этого недавнее исследование показало, что колоректальные опухоли, устойчивые к 5-фторурацилу, с большей вероятностью имеют повышенный гликолиз и, следовательно, более поддаются терапии, направленной на метаболизм рака (Шин и др., 2009). В этом отношении наши результаты противоречат выводам Вонга и др. (2008), которые обнаружили, что высокоинвазивные клетки рака эндометрия наиболее устойчивы к лечению DCA.

Ингибирование PDK в качестве терапии рака против колоректального рака
Мы обнаружили, что дозы 20–50 мМ DCA давали дифференциальные ответы между раковыми и нераковыми клетками. Таким образом, потенциальные терапевтические дозы DCA будут находиться в диапазоне от 20 до 50 мМ. Кроме того, недавнее исследование показало, что IC 50  DCA для клеток рака молочной железы составляет от 20 до 30 мМ (Ko и Allalunis-Turner, 2009). Это контрастирует с предыдущими исследованиями, в которых сообщалось, что DCA снижает пролиферацию и вызывает апоптоз в раковых клетках при дозах всего 0,5–10 мМ (Bonnet et al, 2007; Wong et al, 2008; Sun et al, 2009). Было обнаружено, что дихлорацетат относительно безопасен для людей при использовании для лечения лактоацидоза (Stacpoole et al, 2003). Основные побочные эффекты при дозе до 100 мг/кг DCA  оказываются на нервную систему и печень, вызывая легкую седацию или сонливость, обратимую периферическую невропатию и легкое бессимптомное повышение уровня сывороточных трансаминаз, отражающее повреждение гепатоцеллюлярной ткани (Stacpoole et al, 1998). Кроме того, недавние исследования показали, что DCA эффективно снижает рост опухоли в клинически достижимых дозах как  in vitro  , так и  in vivo  (Bonnet et al, 2007; Sun et al, 2009). Было высказано предположение, что DCA может быстро перейти на раннюю фазу клинических испытаний рака (Michelakis et al, 2008). Однако доза DCA, необходимая для ингибирования роста клеток колоректального рака в нашем исследовании, вряд ли будет достигнута клинически без возникновения значительных побочных эффектов. Доза DCA, необходимая для достижения эквивалентных концентраций в плазме  in vivo,  будет примерно в пять-десять раз больше, чем та, которая используется в клинических испытаниях против лактатацидоза. Похоже, что клетки колоректального рака, использованные в нашем исследовании, более устойчивы к DCA, чем клетки рака легких, эндометрия и молочной железы. Интересно, что Сан и др. (2009) в своем исследовании клеток рака молочной железы обнаружили, что DCA подавляет пролиферацию раковых клеток, но не вызывает апоптоз или гибель клеток. Эти результаты заметно отличались от эффектов DCA, наблюдаемых на клетках рака легких (Бонне и др., 2007), эндометрия (Вонг и др., 2008) и колоректального рака в нашем исследовании. Таким образом, хотя DCA подавляет рост различных раковых клеток, эффект и основные механизмы, по-видимому, зависят от типа клеток. Вероятным объяснением этих дифференциальных эффектов может быть разница в экспрессии изоферментов PDK в исследованных раковых клетках. Дихлорацетат является неспецифическим ингибитором PDK (Whitehouse и Randle, 1973) и имеет различную  Ki для  каждого из четырех изоферментов PDK (Bowker-Kinley et al ,1998). Кроме того, известно, что четыре изофермента PDK по-разному экспрессируются в различных тканях. Таким образом, необходимо разработать ингибиторы для отдельных изоферментов PDK, которые должны позволять проводить специфичные для типа раковых клеток метаболические манипуляции.

Долгосрочная стабилизация метастатической меланомы с помощью дихлорацетата натрия

Долгосрочная стабилизация метастатической меланомы с помощью дихлорацетата натрия


Акбар Хан, Дуг Эндрюс, Джилл Шейнхаус, Аннеке С. Блэкберн

Акбар Хан, Дуглас Эндрюс, Medicor Cancer Centres Inc., Торонто, Онтарио M2N 6N4, Канада

Джилл Шейнхаус, Insight Naturopathic Clinic, Торонто, ON M4P 1N9, Канада


Аннеке С. Блэкберн, Школа медицинских исследований Джона Кертина, Австралийский национальный университет, Канберра, ACT 2601, Австралия 

Вклад авторов: Хан А. лечил пациента и написал большую часть отчета о случае; Эндрюс Д. помогал в разработке протокола натурального лечения для снижения побочных эффектов DCA и написал часть отчета о случае; Шейнхаус Дж. лечил пациента с помощью натуральной терапии; Блэкберн А.С. интерпретировал отчет о случае в контексте литературы по исследованиям DCA in vitro и in vivo, написал части введения и обсуждения, а также просмотрел рукопись в целом.


Заявление об информированном согласии: Пациентка, описанная в данной рукописи, дала согласие на публикацию своего случая анонимно. 


Заявление о конфликте интересов: Один из авторов (Хан) проводит терапию дихлорацетатом для онкологических больных через онкологические центры Medicor Cancer Centres за плату и без получения прибыли. Клиника принадлежит члену семьи этого автора. Другим авторам нечего раскрывать.

Открытый доступ: эта статья является статьей открытого доступа, которая была выбрана внутренним редактором и полностью проверена внешними рецензентами. Она распространяется в соответствии с лицензией Creative Commons Attribution Non Commercial (CC BY-NC 4.0), которая позволяет другим распространять, перерабатывать, адаптировать, строить на основе этой работы некоммерческие работы и лицензировать свои производные работы на других условиях, при условии, что оригинальная работа должным образом цитируется и использование является некоммерческим. См.: http://creativecommons.org/licenses/by-nc/4.0/


Источник рукописи: приглашенная рукопись


Адрес для корреспонденции: Акбар Хан, доктор медицины, медицинский директор, 
Medicor Cancer Centres Inc., 4576 Yonge St., Suite 301, Toronto, 
ON M2N 6N4, Canada. akhan@medicorcancer.com
Телефон: +1-416-2270037
Факс: +1-416-2271915


  Получено:  30 января 2017 г.
  Начало рецензирования:  12 февраля 2017 г.
  Первое решение:  28 марта 2017 г.
  Исправлено:  5 мая 2017 г.
  Принято:  30 мая 2017 г.
  Статья в печати:  31 мая 2017 г.
  Опубликовано онлайн:  10 августа 2017 г.

Абстрактный

Дихлорацетат натрия (DCA) изучается как метаболическая терапия рака с 2007 года на основе публикации Bonnet et al, демонстрирующей, что DCA может вызывать апоптоз (запрограммированную гибель клеток) в клетках рака молочной железы, легких и мозга человека. Классически реакция рака на медикаментозную терапию в исследованиях на людях измеряется с помощью определений Критериев оценки ответа для солидных опухолей, которые определяют «ответ» по степени уменьшения опухоли или исчезновения опухоли при визуализации, однако стабилизация заболевания также является полезным клиническим результатом. Было показано, что DCA может функционировать как цитостатический агент in vitro и in vivo, не вызывая апоптоза. Представлен случай 32-летнего мужчины, у которого терапия DCA без сопутствующей традиционной терапии привела к регрессии и стабилизации рецидивирующей метастатической меланомы в течение более 4 лет с незначительными побочными эффектами. Этот случай демонстрирует, что DCA можно использовать для уменьшения объема заболевания и поддержания долгосрочной стабильности у пациентов с запущенной меланомой.


Ключевые слова: Дихлорацетат; Рак; BRAF; Меланома; Цитостатики


© Автор(ы) 2017. Опубликовано Baishideng Publishing Group Inc. Все права защищены.

Основная подсказка: Дихлорацетат натрия (DCA) изучается как метаболическая терапия рака с 2007 года. Было показано, что терапия DCA может привести к классическому ответу, который измеряется уменьшением или исчезновением опухолей при визуализации. Однако DCA может также остановить рост раковых клеток, не вызывая апоптоза (цитостатический эффект). Это может привести к долгосрочной стабилизации метастатического рака. Мы представляем случай пероральной терапии DCA, которая привела к уменьшению и стабилизации метастатической меланомы у 32-летнего мужчины в течение более 4 лет, с небольшими побочными эффектами.

Хан А., Эндрюс Д., Шейнхаус Дж., Блэкберн А.К. Долгосрочная стабилизация метастатической меланомы с помощью дихлорацетата натрия.
World J Clin Oncol 2017; 8(4): 371-377

Доступно по адресу: URL: http://www.wjgnet.com/2218-4333/full/v8/i4/371.htm
DOI: http://dx.doi.org/10.5306/wjco.v8.i4.371

ВВЕДЕНИЕ

Дихлорацетат натрия (DCA) привлек внимание медицинского сообщества в 2007 году, когда Боннет и др.  опубликовали первое исследование in vitro и in vivo, иллюстрирующее ценность DCA как метаболической терапии рака посредством его ингибирующего действия на митохондриальный фермент пируватдегидрогеназу киназу. Ранее Стакпул и др. опубликовали несколько исследований DCA для лечения врожденного лактатацидоза при митохондриальных заболеваниях. Эти исследования показали, что пероральный DCA является безопасным препаратом для использования человеком. Было отмечено, что DCA не оказывает почечной, легочной, костномозговой и сердечной токсичности . Большинство побочных эффектов DCA были умеренными, причем наиболее серьезным из них была обратимая периферическая невропатия . Также сообщалось об обратимом делирии. Повышение уровня печеночных ферментов (бессимптомное и обратимое) было отмечено у небольшого процента пациентов. Предшествующие исследования митохондриальных расстройств на людях позволили быстро перевести DCA на использование человеком в качестве не по назначению терапии рака. В настоящее время опубликовано несколько отчетов о клинических испытаниях с использованием DCA в качестве терапии рака, подтверждающих его профиль безопасности и указывающих на растущее признание потенциальной полезности DCA в онкологической клинике . Одним из ограничений этих исследований с участием пациентов на поздней стадии является то, что они сообщали только о лечении в течение коротких периодов времени.

В публикации Бонне 2007 года  было показано, что лечение DCA снижает потенциал митохондриальной мембраны, что селективно способствует апоптозу в раковых клетках человека. Ингибирование аэробного гликолиза (эффект Варбурга) и активация митохондриальных калиевых ионных каналов были идентифицированы как механизмы действия DCA. Дальнейшие исследования DCA in vitro подтвердили противораковую активность против широкого спектра типов рака, которые были недавно рассмотрены Канкотией и Стэкпулом . Кроме того, DCA также способен усиливать апоптоз в сочетании с другими агентами . Также были предложены другие противораковые действия DCA, включая ингибирование ангиогенеза  , изменение экспрессии HIF1-α , изменение регуляторов pH клеток V-АТФазы и MCT1, а также других регуляторов выживания клеток, таких как p53 и PUMA . Однако во многих исследованиях in vitro используются неоправданно высокие концентрации DCA, которые клинически недостижимы, в попытке продемонстрировать цитотоксическую активность.. В других исследованиях использовались более скромные концентрации DCA, что показало, что DCA может быть цитостатическим. Во втором отчете 2010 года о его противораковой активности in vivo было обнаружено, что DCA сам по себе является цитостатическим в метастатической модели рака молочной железы , ингибируя пролиферацию, не вызывая апоптоз. Это предполагает роль DCA как стабилизатора рака, аналогичного ингибиторам ангиогенеза.

В ответ на отчет 2007 года о противораковом действии DCA Хан начал использовать DCA для лечения онкологических больных с коротким прогнозом или тех, кто перестал реагировать на традиционные методы лечения рака. В сотрудничестве с врачом-натуропатом (Эндрюс) был разработан протокол натурального лечения для решения проблемы ограничивающей дозу неврологической токсичности DCA. Он состоял из 3 лекарств: ацетил L-карнитин , R-альфа-липоевая кислота и бенфотиамин для профилактики нейропатии и энцефалопатии. У более чем 300 пациентов с поздней стадией рака наблюдательные данные показали, что терапия DCA принесла пользу в 60% -70% случаев. Риск нейропатии при сочетании натуральных нейропротекторных лекарств с DCA составлял приблизительно 20% при дозировке 20-25 мг/кг в день в течение 2 недель приема/1 недели перерыва (клинические наблюдательные данные опубликованы онлайн на сайте www.medicorcancer.com). Здесь представлен отчет о случае пациента, иллюстрирующий как апоптотический, так и антипролиферативный эффект хронического лечения DCA в течение более четырех лет.

ОТЧЕТ О ДЕЛЕ

32-летний ранее здоровый светлокожий мужчина изначально заметил, что родинка на его левой икре начала меняться в 2006 году. Он обратился к врачу, и родинка была удалена. Был поставлен патологический диагноз меланомы. Была проведена диссекция сторожевого узла, которая оказалась отрицательной на метастатическое заболевание. В 2007 году пациент отметил увеличение левых паховых лимфатических узлов и небольшие меланоцитарные поражения на коже левой ноги. Он прошел лечение интерфероном альфа в рамках клинического испытания в региональной онкологической больнице, что привело к уменьшению узлов и разрешению кожных метастазов. Интерферон был отменен через 9 месяцев из-за побочных эффектов.
Пациент оставался в хорошем состоянии до 2010 года, когда появился новый кожный метастаз левой ноги. Он был хирургически удален. В конце 2011 года был обнаружен еще один новый кожный метастаз на левой ноге в рубце от первоначальной операции по удалению меланомы. Была проведена биопсия, и был подтвержден диагноз рецидивирующей меланомы. Затем ему сделали широкое иссечение и пересадку кожи.
В марте 2012 года у пациента диагностировали рецидив в кожном лоскуте левой ноги. Он был иссечен, и была проведена новая процедура пересадки кожи. Патология выявила положительные края иссеченного метастаза, поэтому была проведена повторная резекция, снова с положительными краями. В то же время игольчатая биопсия левого пахового лимфатического узла подтвердила наличие BRAF-положительной метастатической меланомы. Компьютерная томография (КТ), проведенная в марте 2012 года, не выявила никаких признаков отдаленных метастазов. Самый большой левый паховый узел имел диаметр 8 мм, что было сообщено как «незначительный по критериям размера» (рисунок 1).
В апреле 2012 года пациент обратился к врачу-натуропату (Shainhouse) и начал терапию следующими пероральными натуральными противораковыми средствами: активное гексозо-коррелированное соединение или AHCC (экстракт гриба) , корень одуванчика  , куркумин и корень астрагала  . Также была начата парентеральная терапия, которая состояла из внутривенного витамина С два раза в неделю и подкожного экстракта омелы европейской. Пациент также перешел на веганскую диету.
В мае 2012 года пациент посетил клинику автора (Khan), желая получить дополнительные нетрадиционные методы лечения. Обсуждалась терапия DCA, но пациент решил сначала провести адекватную пробу натуральных противораковых методов лечения (прописанных Shainhouse). В мае 2012 года была проведена повторная КТ (всего через 1 месяц естественной терапии), которая выявила умеренное увеличение множественных паховых и наружных подвздошных узлов размерами от 10 мм × 11 мм до 14 мм × 15 мм.
В июле 2012 года КТ-сканирование было повторено для оценки естественной противораковой терапии пациента. В то время левые паховые и наружные подвздошные узлы снова увеличились и имели размер от 13 мм × 16 мм до 22 мм × 20 мм (рисунок 2). ПЭТ-сканирование также было проведено в рамках подготовки к участию в клиническом исследовании в Бостоне, штат Массачусетс (США), и подтвердило повышенное поглощение глюкозы в левых паховых узлах. Появилась новая слабая (2/10) ноющая боль в левой паховой области. Обследование выявило 20-миллиметровый безболезненный левый паховый лимфатический узел и два небольших кожные метастаза в пределах кожного трансплантата левой голени.

Рисунок 1. Компьютерная томография от марта 2012 г. до естественной терапии и до терапии дихлорацетатом. Самый большой узел имел диаметр 8 мм.Рисунок 2. Компьютерная томография от июля 2012 г. после 3 месяцев только естественной терапии, непосредственно перед началом терапии дихлорацетатом. Самый большой узел имел размеры 22 мм × 20 мм.
































Таким образом, у пациента диагностировали прогрессирование заболевания. В этот момент он решил начать терапию DCA. Он начал принимать DCA перорально по 500 мг 3 раза в день, что было эквивалентно 17 мг/кг в день (производитель: Tokyo Chemical Industry, США) в дополнение к поддержанию других натуральных методов лечения. Цикл лечения DCA составлял 2 недели приема и 1 неделю перерыва. Чтобы свести к минимуму возникновение побочных эффектов DCA, были назначены 3 дополнительных натуральных препарата: пероральный ацетил L-карнитин по 500 мг 3 раза в день, пероральный бенфотиамин по 80 мг два раза в день и пероральная R-альфа-липоевая кислота по 150 мг 3 раза в день. Эти добавки принимались ежедневно (без цикла). Были проведены рутинные базовые анализы крови (таблица 1). Все они были в норме, за исключением низкого уровня креатинина, который считался незначительным.
В ноябре 2012 года, через 4 месяца после добавления DCA к его первоначальной естественной противораковой терапии, пациент прошел повторную оценку. Он чувствовал себя в целом хорошо. Было сообщено, что два новых симптома начались только после начала терапии DCA: слегка сниженная чувствительность кончиков пальцев рук и ног и слегка сниженная способность концентрироваться в течение 2 недель, в течение которых он принимал DCA. Легкая потеря чувствительности не ухудшалась и ощущалась как легкая невропатия, связанная с DCA. Сообщалось, что как онемение, так и снижение концентрации прошли в течение недель, когда пациент не принимал DCA. Анализ крови от октября 2012 года не показал существенных изменений (таблица 1). КТ в августе 2012 года и ноябре 2012 года выявили значительную регрессию всех ранее увеличенных лимфатических узлов. Самый большой узел был 10 мм, и не было никаких признаков внутригрудного или внутрибрюшного заболевания, а также никаких метастазов в кости (рисунок 3).
Пациент продолжал чувствовать себя хорошо на терапии DCA и не заметил никаких новых метастазов в коже или нового увеличения паховых узлов. Он продолжал проходить частый клинический мониторинг у своего врача-натуропата (Шейнхаус) и ежегодное последующее наблюдение у своего лечащего врача (Хан). Перечисленные натуральные противораковые терапии (назначенные Шейнхаусом) и терапия DCA продолжались до 2016 года. Результаты анализа крови в июне 2016 года продолжали быть нормальными (таблица 1). КТ была повторена в августе 2016 года, не показав никаких признаков метастатической меланомы, после полных 4 лет непрерывной терапии DCA в сочетании с натуральной противораковой терапией (рисунок 4). К декабрю 2016 года пациент сообщил об увеличении стресса, связанного с работой, и снижении соблюдения режима приема лекарств. В то время он заметил новую паховую массу слева. Была получена ультразвуковая визуализация, которая выявила новый конгломерат увеличенных лимфатических узлов размером 40 мм × 25 мм × 23 мм, с цветным допплером, показывающим кровоток внутри массы. Это было интерпретировано как повторный рост меланомы, примерно после четырех с половиной лет непрерывной терапии DCA. Было проведено дальнейшее обследование, включая ПЭТ/КТ, которое подтвердило рецидив заболевания в 3 левых паховых узлах (SUV max в диапазоне от 13 до 17,8).

Рисунок 3. Компьютерная томография от ноября 2012 г. после 4 месяцев терапии дихлорацетатом. Самый большой узел размером 10 мм.Рисунок 4. Компьютерная томография после 4 лет терапии дихлорацетатом без сопутствующих традиционных методов лечения рака. Сканирование показывает отсутствие повторного роста рака. Все узлы имеют размер менее 10 мм.



































Вкратце, пациент получал традиционную терапию рецидивирующей меланомы 3 стадии в течение 6 лет, состоящую из первичной хирургической резекции с лимфодиссекцией, интерферона альфа и хирургической резекции рецидивирующих кожных метастазов 5 раз. Затем пациент получал только естественную противораковую терапию (назначенную Шейнхаусом) в течение 3 месяцев без ответа, о чем свидетельствовало устойчивое прогрессирование заболевания на серийных КТ-сканированиях. Наконец, пациент добавил пероральную терапию DCA к естественной противораковой терапии с 3 сопутствующими нейропротекторными препаратами (липоевая кислота, ацетил L-карнитин и бенфотиамин) и без сопутствующих традиционных методов лечения рака. Результатом стала полная радиологическая ремиссия, продолжавшаяся более 4 лет, за которой последовал рецидив. Во время курса терапии DCA у пациента наблюдались незначительные побочные эффекты, состоящие из легкой невропатии и небольшого снижения концентрации. У пациента сохранялась функция ECOG уровня 0, и он мог работать полный рабочий день.

Таблица 1 Анализ крови до терапии дихлорацетатом натрия

Анализ крови 12 июля до DCA 12 октября 3 мес. DCA 16 июня 4 года DCA Единицы Нормальный диапазон
Гемоглобин 154 150 157 г/л 135-175
Количество лейкоцитов 4.5 4.1 5 × 10 9 /л 4.0-11.0
Тромбоциты 220 214 229 × 10 9 /л 150-400
Глюкоза 4.6 4.9 ммоль/л 3.6-7.7
Мочевина 3.9 3.2 3.9 ммоль/л 2,5-8,0
Креатинин 49 1 50 1 55 1 мкмоль/л 62-115
Кальций 2.47 2.41 2.47 ммоль/л 2.15-2.60
Альбумин 48 45 47 г/л 35-50
Билирубин 8 10 13 мкмоль/л < 22
Натрий 139 141 140 ммоль/л 135-147
Калий 4 4.3 3.9 ммоль/л 3,5-5,5
Хлористый 106 107 105 ммоль/л 100-110
Щелочная фосфатаза 77 69 71 У/л 45-129
ЛДГ 139 135 144 У/л 120-246
ГГТ 18 19 20 У/л 15-73
АСТ 18 25 21 У/л 7-37
АЛЬТ 18 28 19 У/л 12-49

1 Указывает на аномальное значение. DCA: Дихлорацетат; LDH: Лактатдегидрогеназа; GGT: Гамма-глутамилтрансфераза; AST: Аспартатаминотрансфераза; ALT: Аланинаминотрансфераза.

ОБСУЖДЕНИЕ

Использование перорального DCA у пациента с метастатической меланомой, описанное здесь, демонстрирует уменьшение опухоли и долгосрочную стабильность заболевания в соответствии с клиническим статусом и КТ-визуализацией. Стабильность заболевания сохранялась более 4 лет при приеме DCA в отсутствие какой-либо сопутствующей традиционной терапии, с выживаемостью с момента первоначальной постановки диагноза 10 лет. Согласно статистике рака SEER Национального института рака, выживаемость этого пациента, у которого не было признаков отдаленных метастазов, не является примечательной (62,9% 5-летняя выживаемость при меланоме с распространением на региональные лимфатические узлы, https://seer.cancer.gov/statfacts/html/melan.html). Примечательно то, что в ситуации, когда вовлеченные лимфатические узлы явно увеличивались, добавление пероральной терапии DCA было эффективным для уменьшения увеличивающихся узлов (рисунки 2 и 3) и достижения ремиссии, продолжавшейся более 4 лет. Возможно, что естественные противораковые терапии, которые получал пациент, синергизировались с DCA, но также очевидно, что эти естественные терапии сами по себе не могут объяснить регрессию заболевания. Сообщалось, что DCA оказывает как апоптотический, так и цитостатический эффект, что согласуется с клиническим течением регрессии (апоптотический) и длительной ремиссией (цитостатический) у этого пациента. Рецидив через 4 года совпал с уменьшением соблюдения режима лечения, что предполагает, что этот метод лечения рака с помощью DCA требует постоянного поддержания метаболического давления. Несмотря на рецидив, пациент оставался клинически здоровым и планировал начать прием новых иммунотерапевтических препаратов. Еще предстоит выяснить, сможет ли изменение терапии снова достичь регрессии или стабильности заболевания.
Помимо поддержания ремиссии в течение более 4 лет, этот случай иллюстрирует, что DCA может хорошо переноситься онкологическим пациентом в течение длительного периода времени по сравнению со всеми опубликованными клиническими испытаниями DCA по раку. Примечательно, что этот пациент смог переносить 17 мг/кг в день в режиме 2 недели приема/1 неделя перерыва в течение 4 лет с минимальными побочными эффектами. Это похоже на наш предыдущий отчет о случае хронического использования DCA при раке толстой кишки , где пациент смог переносить 16 мг/кг в день (но не 25 мг/кг в день) в том же режиме, но контрастирует с клиническими испытаниями DCA, которые рекомендуют более низкую дозу 10-12,5 мг/кг в день, вводимую непрерывно. Перерыв в 1 неделю или нейропротекторные добавки могут способствовать способности пациентов в отчетах о случаях переносить более высокую дозу. Генетические полиморфизмы в GSTZ1, ферменте печени, который метаболизирует DCA, также могут способствовать дозе DCA, которая может быть переносима. В испытаниях сообщалось о различных уровнях препарата, но не все из них рассматривали этот фармакогенетический аспект терапии DCA , и необходимы дальнейшие исследования, чтобы выяснить, является ли это существенным фактором переносимости DCA. На момент написания этой статьи продолжается исследование DCA с множественной миеломой у людей, в котором изучаются как генотипы GSTZ1, так и уровни препарата, чтобы внести свой вклад в наше понимание этих проблем (Реестр клинических испытаний Австралии и Новой Зеландии #ACTRN12615000226505, http://www.anzctr.org.au).
Этот отчет о случае показывает, что хроническая терапия DCA может использоваться без снижения качества жизни по сравнению с традиционными методами лечения меланомы, такими как интерферон. Чтобы определить оптимальный протокол для максимально переносимого острого или хронического лечения с помощью DCA, необходимы испытания на людях. Но что еще важнее, все еще остается выяснить, какая доза требуется для целевых эффектов, которые будут эффективны против рака. Эта информация необходима перед инвестированием в более крупные долгосрочные исследования результатов для пациентов. DCA заслуживает дальнейшего изучения в клинических испытаниях как нетоксичная терапия рака из-за своей скромной стоимости и низкой токсичности, а также заслуживает рассмотрения в качестве терапии рака не по назначению.

БЛАГОДАРНОСТИ

Авторы хотели бы поблагодарить доктора Хумайру Хан за ее помощь, а также пациентку за ее поддержку и согласие опубликовать ее случай.

КОММЕНТАРИИ 

Характеристика случая
У 32-летнего мужчины на ноге обнаружилось пигментное пятно.

Клинический диагноз
У пациентки диагностирована меланома.

Лабораторный диагноз:
Меланома подтверждена эксцизионной биопсией.

Диагностика с помощью визуализации:
подтверждено наличие увеличенного пахового узла в меланоме (биопсия иглой).

Патологический диагноз:
Меланома, BRAF-положительный.

Лечение
Иссечение первичного очага с пересадкой кожи, иссечение сторожевого узла, множественные иссечение рецидивирующих кожных метастазов. Традиционная терапия прекращена и начаты натуральные противораковые терапии (AHCC, корень одуванчика, куркумин, корень астрагала, внутривенно витамин С, подкожно европейская омела). Прогрессирование через 3 месяца, добавлен дихлорацетат (DCA). Регресс и ремиссия после добавления DCA, продолжающиеся более 4 лет.

Сопутствующие отчеты
Отчеты компьютерной томографии демонстрируют течение заболевания и реакцию на терапию.

Объяснение термина 
DCA: Дихлорацетат натрия; RECIST: Критерии оценки ответа на солидные опухоли; ECOG: Восточная кооперативная онкологическая группа; SEER: Наблюдение, эпидемиология и конечные результаты.

Опыт и уроки
DCA может действовать как проапоптотический и цитостатический препарат и, таким образом, может достигать регрессии, а также долгосрочной стабилизации метастатического рака без серьезных побочных эффектов, как показано на примере этого случая меланомы.

Рецензирование
Доктор Хан описал 32-летнего мужчину, который получал терапию DCA с другими препаратами от натуропатов и поддерживался в состоянии стабилизации (метастатическая меланома) более 4 лет. Это интересный случай.

ССЫЛКИ


1 Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. Ось митохондриального канала K+ подавляется при раке, а ее нормализация способствует апоптозу и подавляет рост рака. Cancer Cell 2007; 11: 37-51 [PMID: 17222789 DOI: 10.1016/ j.ccr.2006.10.020]
2 Stacpoole PW, Kurtz TL, Han Z, Langaee T. Роль дихлорацетата в лечении генетических митохондриальных заболеваний. Adv Drug Deliv Rev 2008; 60: 1478-1487 [PMID: 18647626 DOI: 10.1016/ j.addr.2008.02.014]
3 Stacpoole PW, Gilbert LR, Neiberger RE, Carney PR, Valenstein E, Theriaque DW, Shuster JJ. Оценка длительного лечения детей с врожденным лактоацидозом дихлорацетатом. Педиатрия 2008; 121: e1223-e1228 [PMID: 18411236 DOI: 10.1542/ peds.2007-2062]
4 Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn NM, Gilmore RL, Greer M, Henderson GN, Hutson AD, Neiberger RE, O'Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E. Контролируемое клиническое исследование дихлорацетата для лечения врожденного лактоацидоза у детей. Педиатрия 2006; 117: 1519-1531 [PMID: 16651305 DOI: 10.1542/peds.2005-1226]
5 Berendzen K, Theriaque DW, Shuster J, Stacpoole PW. Терапевтический потенциал дихлорацетата при дефиците пируватдегидрогеназного комплекса. Mitochondrion 2006; 6: 126-135 [PMID: 16725381 DOI: 10.1016/j.mito.2006.04.001]
6 Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano M, Stacpoole PW, DiMauro S, De Vivo DC. Дихлорацетат вызывает токсическую невропатию при MELAS: рандомизированное контролируемое клиническое исследование. Neurology 2006; 66: 324-330 [PMID: 16476929 DOI: 10.1212/01. wnl.0000196641.05913.27]
7 Brandsma D, Dorlo TP, Haanen JH, Beijnen JH, Boogerd W. Тяжелая энцефалопатия и полинейропатия, вызванная дихлорацетатом. J Neurol 2010; 257: 2099-2100 [PMID: 20632025 DOI: 10.1007/ s00415-010-5654-9]
8 Микелакис Э.Д., Сутендра Г., Дромпарис П., Вебстер Л., Хароми А., Нивен Э., Магуайр К., Гаммер Т.Л., Макки Дж.Р., Фултон Д., Абдулкарим Б., Макмертри М.С., Петрук К.С. Метаболическая модуляция глиобластомы дихлорацетатом. Sci Transl Med 2010; 2: 31ra34 [PMID: 20463368 DOI: 10.1126/scitranslmed.3000677]
9 Данбар EM, Коутс BS, Шроудс AL, Лангаи T, Лью A, Фордер JR, Шустер JJ, Вагнер DA, Стэкпул PW. Фаза 1 испытания дихлорацетата (DCA) у взрослых с рецидивирующими злокачественными опухолями мозга. Invest New Drugs2014; 32: 452-464 [PMID: 24297161 DOI: 10.1007/ s10637-013-0047-4]
10Garon EB, Christofk HR, Hosmer W, Britten CD, Bahng A, Crabtree MJ, Hong CS, Kamranpour N, Pitts S, Kabbinavar F, Patel C, von Euw E, Black A, Michelakis ED, Dubinett SM, Slamon DJ. Дихлорацетат следует рассматривать с химиотерапией на основе платины при гипоксических опухолях, а не как единственный агент при распространенном немелкоклеточном раке легких. J Cancer Res Clin Oncol 2014; 140: 443-452 [PMID: 24442098 DOI: 10.1007/s00432-014-1583-9]
11 Chu QS, Sangha R, Spratlin J, Vos LJ, Mackey JR, McEwan AJ, Venner P, Michelakis ED. Открытое исследование фазы I с однокомпонентным методом и повышением дозы дихлорацетата (DCA) у пациентов с запущенными солидными опухолями. Invest New Drugs 2015; 33: 603-610 [PMID: 25762000 DOI: 10.1007/s10637-015-0221-y]
12 Канкотия С., Стэкпул П. У. Дихлорацетат и рак: новый дом для орфанного препарата? Biochim Biophys Acta 2014; 1846: 617-629 [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005]
13 Сан Р. К., Борд П. Г., Блэкберн А. К. Нацеливание метаболизма с помощью триоксида мышьяка и дихлорацетата в клетках рака молочной железы. Mol Cancer 2011; 10: 142 [PMID: 22093145 DOI: 10.1186/1476-4598-10-142]
14 Stockwin LH, Yu SX, Borgel S, Hancock C, Wolfe TL, Phillips LR, Hollingshead MG, Newton DL. Дихлорацетат натрия селективно воздействует на клетки с дефектами в митохондриальной ЭТЦ. Int J Cancer 2010; 127: 2510-2519 [PMID: 20533281 DOI: 10.1002/ijc.25499]
15 Gang BP, Dilda PJ, Hogg PJ, Blackburn AC. Нацеливание на два аспекта метаболизма при лечении рака молочной железы. Cancer Biol Ther 2014; 15: 1533-1541 [PMID: 25482950 DOI: 10.4161/15384047.2014.955992]
16 Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JM, McMurtry MS, Michelakis ED. Активация митохондрий путем ингибирования PDKII подавляет сигнализацию HIF1a и ангиогенез при раке. Oncogene 2013; 32: 1638-1650 [PMID: 22614004 DOI: 10.1038/onc.2012.198]
17 Cairns RA, Bennewith KL, Graves EE, Giaccia AJ, Chang DT, Denko NC. Фармакологически повышенная гипоксия опухоли может быть измерена с помощью позитронно-эмиссионной томографии с 18F-фторазомицин арабинозидом и усиливает реакцию опухоли на гипоксический цитотоксин PR-104. Clin Cancer Res 2009; 15: 7170-7174 [PMID: 19920111 DOI: 10.1158/1078-0432.CCR-09-1676]
18 Anderson KM, Jajeh J, Guinan P, Rubenstein M. In vitro эффекты дихлорацетата и CO2 на гипоксические клетки HeLa. Anticancer Res 2009; 29: 4579-4588 [PMID: 20032407]
19 Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC. Изменение гликолитического фенотипа дихлорацетатом подавляет рост метастатических клеток рака молочной железы in vitro и in vivo. Breast Cancer Res Treat 2010; 120: 253-260 [PMID: 19543830 DOI: 10.1007/ s10549-009-0435-9]
20De Grandis D. Ацетил-L-карнитин для лечения периферической нейропатии, вызванной химиотерапией: краткий обзор. CNS Drugs 2007; 21 Suppl 1: 39-43; обсуждение 45-46 [PMID: 17696592]
21 Maestri A, De Pasquale Ceratti A, Cundari S, Zanna C, Cortesi E, Crinò L. Пилотное исследование эффекта ацетил-L-карнитина при периферической нейропатии, вызванной паклитакселом и цисплатином. Tumori 2005; 91: 135-138 [PMID: 15948540]
22 Evans JD, Jacobs TF, Evans EW. Роль ацетил-L-карнитина в лечении диабетической периферической нейропатии. Ann Pharmacother 2008; 42: 1686-1691 [PMID: 18940920 DOI: 10.1345/aph.1L201]
23 Mijnhout GS, Kollen BJ, Alkhalaf A, Kleefstra N, Bilo HJ. Альфа-липоевая кислота при симптоматической периферической нейропатии у пациентов с диабетом: метаанализ рандомизированных контролируемых исследований. Int J Endocrinol 2012; 2012: 456279 [PMID: 22331979 DOI: 10.1155/2012/456279]
24 Liu F, Zhang Y, Yang M, Liu B, Shen YD, Jia WP, Xiang KS. [Лечебный эффект альфа-липоевой кислоты на периферическую нейропатию при диабете 2 типа: клиническое исследование]. Zhonghua Yixue Zazhi 2007; 87: 2706-2709 [PMID: 18167250]
25 Ziegler D, Hanefeld M, Ruhnau KJ, Meissner HP, Lobisch M, Schütte K, Gries FA. Лечение симптоматической диабетической периферической нейропатии антиоксидантной альфа-липоевой кислотой. 3-недельное многоцентровое рандомизированное контролируемое исследование (исследование ALADIN). Diabetologia 1995; 38: 1425-1433 [PMID: 8786016]
26 Winkler G, Kempler P. [Патомеханизм диабетической нейропатии: предпосылки патогенез-ориентированной терапии]. Orv Hetil 2010; 151: 971-981 [PMID: 20519180 DOI: 10.1556/OH.2010.28898]
27 Ang CD, Alviar MJ, Dans AL, Bautista-Velez GG, Villaruz-Sulit MV, Tan JJ, Co HU, Bautista MR, Roxas AA. Витамин B для лечения периферической нейропатии. Cochrane Database Syst Rev 2008; (3): CD004573 [PMID: 18646107 DOI: 10.1002/14651858.CD004573. pub3]
28 Winkler G, Pál B, Nagybéganyi E, Ory I, Porochnavec M, Kempler P. Эффективность различных режимов дозировки бенфотиамина при лечении болезненной диабетической невропатии. Arzneimittelforschung 1999; 49: 220-224 [PMID: 10219465 DOI: 10.1055/s-0031-1300405]
29 Ignacio RM, Kim CS, Kim YD, Lee HM, Qi XF, Kim SK. Терапевтический эффект активного гексозо-коррелированного соединения (AHCC) в сочетании с CpG-ODN (олигодезоксинуклеотидом) в мышиной модели меланомы B16. Cytokine 2015; 76: 131-137 [PMID: 26082022 DOI: 10.1016/j.cyto.2015.06.002]
30 Chatterjee SJ, Ovadje P, Mousa M, Hamm C, Pandey S. Эффективность экстракта корня одуванчика в индукции апоптоза в клетках меланомы человека, устойчивых к лекарственным препаратам. Evid Based Complement Alternat Med 2011; 2011: 129045 [PMID: 21234313 DOI: 10.1155/2011/129045]
31Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A. Куркумин: новый кандидат для терапии меланомы? Int J Cancer 2016; 139: 1683-1695 [PMID: 27280688 DOI: 10.1002/ijc.30224]
32 Huang XY, Zhang SZ, Wang WX. Повышение противоопухолевой эффективности при комбинированном применении астрагала и птеростильбена при меланоме. Asian Pac J Cancer Prev 2014; 15: 1163-1169 [PMID: 24606435]
33 Wagner SC, Markosian B, Ajili N, Dolan BR, Kim AJ, Alexandrescu DT, Dasanu CA, Minev B, Koropatnick J, Marincola FM, Riordan NH. Внутривенная аскорбиновая кислота как адъювант иммунотерапии интерлейкином-2. J Transl Med 2014; 12: 127 [PMID: 24884532 DOI:10.1186/1479-5876-12-127]
34 Horneber MA, Bueschel G, Huber R, Linde K, Rostock M. Терапия омелой в онкологии. Cochrane Database Syst Rev 2008; (2): CD003297 [PMID: 18425885 DOI: 10.1002/14651858.CD003297.pub2]
35 Delaney LM, Ho N, Morrison J, Farias NR, Mosser DD, Coomber BL. Дихлорацетат влияет на пролиферацию, но не на выживаемость клеток колоректального рака человека. Apoptosis 2015; 20: 63-74 [PMID: 25344893 DOI: 10.1007/s10495-014-1046-4]
36 Abildgaard C, Dahl C, Basse AL, Ma T, Guldberg P. Биоэнергетическая модуляция с помощью дихлорацетата снижает рост клеток меланомы и усиливает их ответ на ингибирование BRAFV600E. J Transl Med 2014; 12: 247 [PMID: 25182332 DOI: 10.1186/s12967-014-0247-5]
37 Хан А., Эндрюс Д., Блэкберн А. С. Долгосрочная стабилизация рака толстой кишки 4 стадии с использованием терапии дихлорацетатом натрия. World J Clin Cases 2016; 4: 336-343 [PMID: 27803917]
38 Ценг Х. Ф., Блэкберн А. С., Борд П. Г., Андерс М. В. Полиморфизм и зависящая от вида инактивация дзета-глутатионтрансферазы дихлорацетатом. Chem Res Toxicol 2000; 13: 231-236 [PMID: 10775321]

Дихлорацетат (ДХА) и рак: обзор клинического применения

Дихлорацетат (ДХА) и рак: обзор клинического применения


Лаборатория доклинических и трансляционных исследований, IRCCS-CROB, Реферальный онкологический центр Базиликаты, Рионеро-ин-Вультуре (Pz), 85028, Италия
2 Кафедра клинической и экспериментальной медицины, Университет Фоджи, Фоджа 71121, Италия

Корреспонденцию следует направлять Тициане Татарани; tiziana.tataranni@crob.it


Приглашенный редактор: Канхайя Сингх

Авторские права © 2019 Тициана Татаранни и Клаудия Пикколи. Это статья открытого доступа, распространяемая по лицензии Creative Commons Attribution, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.

Получено:  24 июля 2019 г.
Изменено:  12 сентября 2019 г.
Принято:  11 октября 2019 г.
Опубликовано онлайн:  14 ноября 2019 г.


Обширный объем литературы описывает противораковые свойства дихлорацетата (DCA), но его эффективное клиническое применение в терапии рака по-прежнему ограничивается клиническими испытаниями. Возникновение побочных эффектов, таких как нейротоксичность, а также подозрение на канцерогенность DCA по-прежнему ограничивают клиническое применение DCA. Однако в последние годы число отчетов, поддерживающих использование DCA против рака, возросло также из-за большого интереса к нацеливанию на метаболизм опухолевых клеток. Анализ механизма действия DCA помог понять основы его селективной эффективности против раковых клеток. Успешное совместное введение DCA с традиционной химиотерапией, радиотерапией, другими препаратами или природными соединениями было протестировано на нескольких моделях рака. Новые системы доставки лекарств и многофункциональные соединения, содержащие DCA и другие препараты, по-видимому, улучшают биодоступность и кажутся более эффективными благодаря синергетическому действию нескольких агентов. Распространение отчетов, поддерживающих эффективность DCA в терапии рака, побудило провести дополнительные исследования, которые позволили найти другие потенциальные молекулярные мишени DCA. Интересно, что DCA может существенно влиять на фракцию стволовых клеток рака и способствовать искоренению рака. В совокупности эти результаты дают весомое обоснование для новых клинических трансляционных исследований DCA в терапии рака.

ВВЕДЕНИЕ

Рак является одной из основных причин смерти во всем мире. Несмотря на значительный прогресс в диагностических и терапевтических подходах, его искоренение по-прежнему представляет собой проблему. Слишком много факторов ответственны за неудачу терапии или рецидив, поэтому существует острая необходимость в поиске новых подходов к его лечению. Помимо типичных известных свойств, характерных для злокачественных клеток, включая аномальную пролиферацию, дерегуляцию апоптоза и клеточного цикла [1, 2] , раковые клетки также демонстрируют особую метаболическую машину, которая предлагает еще один многообещающий подход к терапии рака [3–5] . Наша группа уже предположила важность метаболической характеристики раковых клеток для прогнозирования эффективности метаболического лечения [6] . Лекарства, способные влиять на метаболизм рака, уже рассматриваются, показывая обнадеживающие результаты с точки зрения эффективности и переносимости [7] . В последнее десятилетие малая молекула DCA, уже используемая для лечения острого и хронического лактоацидоза, врожденных ошибок митохондриального метаболизма и диабета [8] , в основном предназначалась в качестве противоракового препарата. DCA представляет собой водорастворимую молекулу кислоты массой 150 Да, аналог уксусной кислоты, в которой два из трех атомов водорода метильной группы заменены атомами хлора (рисунок 1(a)) [9] . Введение DCA в дозах от 50 до 200 мг/кг/умер связано с уменьшением объема опухолевой массы, скорости пролиферации и распространения метастазов в нескольких доклинических моделях [10] . Наша группа уже наблюдала обратную корреляцию между способностью DCA убивать раковые клетки и их митохондриальной дыхательной способностью в карциномах ротовых клеток [11] . Более того, недавно мы описали способность DCA влиять на митохондриальную функцию и замедлять прогрессирование рака в модели рака поджелудочной железы [12] . На сегодняшний день доступны последовательные данные клинических испытаний и отчеты о случаях, описывающие введение DCA у онкологических больных [13–16] , но, несмотря на растущий объем литературы, подтверждающей эффективность DCA против рака, он пока не используется в клинической практике. Целью этого обзора является обобщение последних отчетов, предполагающих использование DCA в терапии рака в сочетании с химиотерапевтическими агентами, радиотерапией и другими химическими или природными соединениями, демонстрирующими противораковые свойства. Кроме того, мы описали данные о новых целевых фармакологических формулах DCA, способных избегать побочных эффектов и улучшать биодоступность и эффективность препарата, что еще больше поощряет его возможное клиническое применение. Наконец, мы рассмотрели последние результаты, предполагающие другие потенциальные механизмы действия DCA, включая новые данные о его способности влиять на фракцию стволовых клеток рака.

Рисунок 1: (a) Химическая структура DCA. (b) Механизм действия DCA: PDK: пируватдегидрогеназная киназа; PDH: пируватдегидрогеназа. Черные пунктирные линии — биохимические процессы, ингибируемые DCA; Красные стрелки — метаболические пути, активируемые DCA.

DCA и рак: механизм действия

Потенциальная эффективность DCA в терапии рака обусловлена ​​метаболическими свойствами раковых клеток, которые обычно характеризуются повышенной гликолитической активностью и сниженным митохондриальным окислением независимо от доступности кислорода, хорошо известный эффект Варбурга [17] . Чрезмерный гликолиз и возникающее в результате перепроизводство лактата вызывают состояние метаболического ацидоза в микроокружении опухоли [ 18] . Лактат, образующийся в результате гликолиза, поглощается окружающими клетками для поддержки роста опухоли и ингибирует механизмы апоптотической гибели клеток [19, 20] . Несколько ферментов, участвующих в гликолизе, регулируют апоптоз, и их сверхэкспрессия в раковых клетках способствует подавлению апоптоза [21] . В этой ситуации соли DCA избирательно воздействуют на раковые клетки, переключая их метаболизм с гликолиза на окислительное фосфорилирование путем ингибирования киназы пируватдегидрогеназы (PDK), ингибитора пируватдегидрогеназы (PDH) [10] . Активация PDH способствует митохондриальному окислению пирувата и нарушает метаболическое преимущество раковых клеток. Мутации митохондриальной ДНК, часто возникающие при опухолеобразовании и приводящие к дисфункции дыхательной цепи [22, 23] , делают злокачественные клетки неспособными поддерживать клеточную потребность в энергии. Кроме того, снижая выработку лактата, DCA противодействует ацидозному состоянию микроокружения опухоли, способствуя ингибированию роста опухоли и ее распространению [24] . Доставка пирувата в митохондрии вызывает ремоделирование органелл, что приводит к увеличению оттока цитохрома c и других факторов, индуцирующих апоптоз, и повышению уровня ROS с последующим снижением жизнеспособности раковых клеток [9] (рисунок 1(b)).

Побочные эффекты и ограничения при использовании DCA

Клиническое применение DCA доступно как в пероральных, так и в парентеральных формулах, а дозы варьируются от 10 до 50 мг/кг/смерть [25] . Никакие доказательства тяжелой гематологической, печеночной, почечной или сердечной токсичности не подтверждают безопасность DCA [26] . Распространенные желудочно-кишечные побочные эффекты часто возникают у определенного процента пациентов, получавших лечение DCA [15] . Наиболее известным ограничением для введения DCA, наблюдавшимся как в доклинических, так и в клинических исследованиях, является периферическая невропатия [27] . Избирательность повреждения нервной системы, вызванного DCA, может быть связана с отсутствием хорошо оснащенного аппарата, способного справиться с более устойчивым окислительным фосфорилированием в клетках, продуцирующих АТФ в основном посредством гликолиза [28] . Возникающая в результате перегрузка митохондрий ставит под угрозу эффективность антиоксидантных систем, неспособных противостоять чрезмерному количеству ROS. В этой ситуации современное введение антиоксидантов должно представлять собой дополнительную стратегию для минимизации невропатии, вызванной DCA [27] . Экспрессия и активность глутатионтрансферазы zeta1 (GSTZ1), первого фермента, ответственного за клиренс DCA, могут влиять на сущность повреждения. Несинонимичные функциональные однонуклеотидные полиморфизмы (SNP) в гене человека GSTZ1 приводят к появлению различных гаплотипов, которые отвечают за различную кинетику и динамику DCA. Была продемонстрирована четкая связь между гаплотипом GSTZ1 и клиренсом DCA. На этой основе персонализированная дозировка DCA, основанная не только на массе тела, может минимизировать или предотвратить побочные эффекты у пациентов, хронически принимающих этот препарат [29] . Возникновение нейропатии связано с хроническим пероральным приемом DCA и является обратимым эффектом, ограниченным временем лечения [30] . Внутривенный путь снижает, OH Cl Cl O (a) Раковые клетки Раковые клетки Смерть раковых клеток Лактат Опухоль Микросреда Лактат Пируват Гликолиз PDK DCA PDH Окислительное фосфорилирование Апоптоз восстановление Цитохром c Глюкоза (b) Рисунок 1: (a) Химическая структура DCA. (b) Механизм действия DCA: PDK: пируватдегидрогеназная киназа; PDH: пируватдегидрогеназа. Черные пунктирные линии, биохимические процессы, ингибируемые DCA; Красные стрелки, метаболические пути, активируемые DCA. 2 Окислительная медицина и клеточная продолжительность жизни, следовательно, потенциал нейротоксичности и позволяют достижению более высоких концентраций препарата обойти пищеварительную систему [13] .
Поскольку DCA входит в число побочных продуктов дезинфекции воды, обнаруженных в низких концентрациях в питьевой воде, его потенциальная канцерогенность находится на стадии оценки. Исследования, проведенные на мышах, связывают воздействие DCA в раннем возрасте с увеличением частоты возникновения гепатоцеллюлярных опухолей [31]. Вполне возможно, что постоянные изменения в метаболизме клеток, вызванные DCA, могут вызывать эпигенетические эффекты. Длительная индукция PDH и других окислительных путей, связанных с метаболизмом глюкозы, может способствовать увеличению активных форм кислорода и митохондриального стресса [27] . Однако в клинических исследованиях не сообщается о каких-либо доказательствах канцерогенного эффекта при введении DCA в терапии рака.

Синергетический эффект DCA и химиотерапевтических агентов

Комбинирование различных препаратов является общепринятой стратегией для получения синергического полезного эффекта в терапии рака, снижения дозировки препаратов, минимизации рисков токсичности и преодоления лекарственной устойчивости. Совместное введение DCA и традиционных химиотерапевтических агентов было предназначено и протестировано на нескольких моделях рака (таблица 1). Лечение DCA, по-видимому, повышает эффективность химиотерапии, вызывая биохимические и метаболические изменения, что приводит к значительным изменениям энергетического баланса раковых клеток. Исследование, проведенное при немелкоклеточном раке легких (НМРЛ), показало как in vitro, так и in vivo, что совместное введение DCA с паклитакселом повышает эффективность гибели клеток за счет ингибирования аутофагии [32] . Эффективная комбинация DCA и доксорубицина (DOX) была протестирована на клетках HepG2, продемонстрировав способность DCA нарушать клеточную антиоксидантную защиту, тем самым способствуя окислительному повреждению, в свою очередь, вызванному лечением DOX [33] . Существует сильная связь между сверхэкспрессией PDK и химиорезистентностью; таким образом, можно предположить, что ингибирование PDK может помочь повторно сенсибилизировать раковые клетки к препаратам. Сверхэкспрессия изоформы PDK2 была связана с резистентностью к паклитакселу при НМРЛ. Интересно, что комбинация DCA с паклитакселом была более эффективна в уничтожении резистентных клеток, чем лечение паклитакселом или DCA по отдельности [34] . Подобно НМРЛ, интересное исследование in vivo, проведенное при распространенном раке мочевого пузыря, показало повышенную экспрессию изоформы PDK4 при высокой степени злокачественности по сравнению с раком низкой степени злокачественности, а совместное лечение DCA и цисплатином значительно уменьшило объемы опухоли по сравнению с DCA или цисплатином по отдельности [35]. Недавнее исследование подтвердило способность DCA устранять химиорезистентность, связанную с PDK4, также при гепатоцеллюлярной карциноме человека (ГЦК) [36] .

Опухолевая сущность Модельная система Препарат химиотерапии, вводимый совместно с DCA Механизм действия Исход Ссылки
Рак легких Линии клеток A549-H1975/модель ксенотрансплантата Паклитаксел Торможение аутофагии Эффективная сенсибилизация к химиотерапии рака [32]
Гепатокарцинома Линия клеток HepG2 Доксорубицин Нарушение антиоксидантной защиты Увеличение повреждения клеток из-за индукции окислительного стресса [33]
Рак легких Линия клеток A549 Паклитаксел Повышенная химиочувствительность за счет ингибирования PDK2 Преодоление резистентности к паклитакселу [34]
Рак мочевого пузыря Клеточные линии HTB-9, HT-1376, HTB-5, HTB-4/модель ксенотрансплантата Цисплатин Повышенная химиочувствительность за счет ингибирования PDK4 Увеличение гибели раковых клеток и потенциальные терапевтические преимущества [35]
Гепатокарцинома Сферические культуры из клеточных линий HepaRG и BC2 Цисплатин, сорафениб Повышенная химиочувствительность за счет ингибирования PDK4 Улучшение терапевтического эффекта химиотерапии за счет восстановления активности митохондрий [36]

Таблица 1: Список отчетов, предполагающих положительный эффект совместного применения DCA и химиотерапии при нескольких типах рака.


Синергетический эффект DCA и других потенциальных противораковых препаратов

Последовательный объем литературы предполагает положительные эффекты совместного введения DCA с соединениями, которые в настоящее время используются для лечения других заболеваний, но демонстрируют противораковые свойства в нескольких моделях рака (таблица 2). Современное введение DCA и антибиотика салиномицина, недавно заново открытого за его цитотоксические свойства как потенциального противоракового препарата, было протестировано на линиях клеток колоректального рака. Их лечение, по-видимому, оказывает синергический цитотоксический эффект, ингибируя экспрессию белков, связанных с множественной лекарственной устойчивостью [37] . Раковые клетки, лишенные метаболических ферментов, участвующих в метаболизме аргинина, могут привести к чувствительности к лечению аргиназой. Интересно, что совместное введение рекомбинантной аргиназы и DCA оказывает антипролиферативный эффект при тройном негативном раке молочной железы из-за активации p53 и индукции остановки клеточного цикла [38] . Ингибиторы COX2, в основном используемые в качестве противовоспалительных препаратов, недавно были предложены в качестве противоопухолевых препаратов из-за их антипролиферативной активности. Интригующее исследование, проведенное на клетках рака шейки матки, показало неспособность DCA убивать клетки рака шейки матки, сверхэкспрессирующие COX2, и продемонстрировало, что ингибирование COX2 целекоксибом делает клетки рака шейки матки более чувствительными к DCA как в экспериментах in vitro, так и in vivo [39] . Поскольку DCA способствует окислительному фосфорилированию за счет снижения гликолитической активности, сочетание DCA с другими препаратами, усиливающими состояние зависимости от глюкозы, может быть многообещающей стратегией. Такой подход был опробован при раке головы и шеи, при котором введение пропранолола, неселективного бета-блокатора, способного влиять на митохондриальный метаболизм опухолевых клеток, вызывало гликолитическую зависимость и энергетический стресс, делая клетки более уязвимыми для лечения DCA [40] . Аналогичные результаты были получены в клетках меланомы, в которых введение ингибиторов рецептора ретиноевой кислоты β (RARβ) вызывало сенсибилизацию к DCA [41] . Положительный эффект совместного введения DCA с метформином, гипогликемическим препаратом, широко используемым для лечения диабета, был продемонстрирован в доклинической модели глиомы [42] , а также в низкометастатическом варианте карциномы легких Льюис (LLC) [43] . Цзян и его коллеги исследовали эффекты фенформина, аналога метформина, и DCA в глиобластоме, продемонстрировав, что одновременное ингибирование комплекса I и PDK фенформином и DCA, соответственно, снижало самообновление и жизнеспособность стволовых клеток глиомы (GSC), что предполагает их возможное использование для воздействия на фракцию стволовых клеток рака [44] .

Лекарство Основная функция Опухолевая сущность Модельная система Исход Ссылки
Салиномицин Антибиотик Колоректальный рак Линии клеток DLD-1 и HCT116 Ингибирование белков, связанных с множественной лекарственной устойчивостью [37]
Аргиназа Метаболизм аргинина Рак молочной железы Модель MDA-MB231 и MCF-7/ксенотрансплантат Антипролиферативный эффект за счет активации p53 и остановки клеточного цикла [38]
ингибиторы ЦОГ2 Воспаление Рак шейки матки Линии клеток HeLa и SiHa/модель ксенотрансплантата Подавление роста раковых клеток [39]
Пропранолол Бета-блокатор Рак головы и шеи Клеточные линии mEERL и MLM3/C57Bl/6 м Повышение глюкозозависимости и усиление эффекта химиолучевой терапии [40]
Ингибиторы RARβ Метаболизм витамина А Меланома Клеточные линии ED-007, ED-027, ED-117 и ED196 Развитие зависимости от глюкозы и сенсибилизация к DCA [41]
Метформин Диабет Глиома, карцинома легких Льюиса Модель ксенотрансплантата; клетки LLC/R9 Продление жизни мышей с глиомой; сильная зависимость от глюкозы в микроокружении опухоли [42, 43]
Фенформин Диабет Глиобластома Модель стволовых клеток глиомы/ксенотрансплантата Торможение самообновления раковых стволовых клеток [44]

Таблица 2: Список препаратов, основная функция которых была протестирована в сочетании с DCA на нескольких моделях рака.


Совместное использование DCA и натуральных соединений

Клиническое применение природных соединений представляет собой многообещающий новый подход к лечению ряда заболеваний [45] . Все больше литературы подтверждает обнаружение среди природных соединений биологически активных веществ, выделенных растениями, грибами, бактериями или морскими организмами, которые оказывают благотворное воздействие на здоровье человека [46–48] . Предположение о природных соединениях или их производных, по-видимому, представляет собой обнадеживающий подход к предотвращению возникновения или рецидива рака, и это обычно называется химиопрофилактикой [49] . Более того, природные вещества оказывают благотворное воздействие при терапии рака при совместном введении с другими препаратами, демонстрируя их способность преодолевать лекарственную устойчивость, увеличивать противораковый потенциал и снижать дозы лекарств и токсичность [50, 51] . Интересно, что недавно было предложено совместное введение DCA и природных соединений. В исследовании изучалось комбинированное действие DCA с куркумином, смешанным с эфирным маслом, соединением с полезными свойствами как для профилактики, так и для лечения рака [52] , демонстрирующим противораковый потенциал против HCC [53] . В частности, сочетание обоих соединений синергически снижало выживаемость клеток, способствуя апоптозу клеток и вызывая внутриклеточную генерацию ROS. Бетулин, природное соединение, выделенное из бересты, уже известно своим антипролиферативным и цитотоксическим действием против нескольких линий раковых клеток [54–56] . Исследование противоопухолевой активности производных бетулина in vitro при НМРЛ подтвердило его способность ингибировать in vivo и in vitro рост клеток рака легких, блокируя фазу G2/M клеточного цикла и вызывая активацию каспазы и фрагментацию ДНК. Интересно, что производное бетулина Bi-L-RhamBet было способно нарушать митохондриальную электрон-транспортную цепь (ETC), вызывая выработку ROS. Учитывая свойство DCA увеличивать общее окисление глюкозы в митохондриях через цикл Кребса и ETC, авторы объединили Bi-L-RhamBet с DCA, продемонстрировав его значительную потенцированную цитотоксичность [57] .

DCA и радиосенсибилизация

Радиотерапия представляет собой еще одну стратегию лечения рака и обеспечивает локальный подход путем введения высокоэнергетических лучей [58] . Основным эффектом облучения является индукция ROS с последующим повреждением ДНК, хромосомной нестабильностью и гибелью клеток путем апоптоза [59] . Однако некоторые опухоли демонстрируют или развивают радиорезистентность, которая является причиной неудачи радиотерапии и высокого риска рецидива опухоли или метастазирования [60] . Несколько факторов могут быть ответственны за радиорезистентность [61] . Среди них гипоксия, распространенное состояние микросреды опухоли, характеризующееся низким уровнем кислорода и сниженной генерацией видов ROS, может блокировать эффективность ионизирующего излучения [62] . Поэтому увеличение оксигенации опухоли таким образом, чтобы способствовать значительному количеству ROS [63] или напрямую индуцировать выработку ROS, может представлять собой стратегию повышения радиосенсибилизации [64 , 65] . В этой ситуации введение DCA, которое, как известно, индуцирует выработку ROS [11, 66] , может представлять собой стратегию преодоления радиорезистентности опухоли. Более того, известно, что метаболические изменения, характерные для развития рака, влияют на радиочувствительность [67, 68] . Следовательно, нацеливание на промежуточные продукты метаболизма рака может представлять собой стратегию улучшения селективного ответа рака на облучение [69] . Эффективность DCA для повышения радиочувствительности уже была продемонстрирована как на клетках глиобластомы [70] , так и на плоскоклеточной карциноме пищевода [71] . Совсем недавно было продемонстрировано, что DCA повышает радиочувствительность в клеточной модели медуллобластомы, смертельной опухоли мозга у детей, вызывая изменения метаболизма ROS и функции митохондрий и подавляя способность к восстановлению ДНК [72] . Поскольку роль иммунотерапии в восстановлении иммунной защиты против прогрессирования опухоли и метастазирования привлекает большое внимание в последние годы [73] , Гупта и Двараканат представили современное состояние возможных эффектов гликолитических ингибиторов, включая DCA, на радиосенсибилизацию опухоли, сосредоточив свое внимание на взаимодействии между метаболическими модификаторами и иммунной модуляцией в процессах радиосенсибилизации [74] . Интересно, что они сообщили о способности DCA способствовать иммунной стимуляции посредством ингибирования накопления лактата, что еще больше поддерживает его использование в качестве адъюванта радиотерапии.

DCA и новые лекарственные формы

Растет интерес к разработке новых лекарственных форм для улучшения доставки лекарств, повышения эффективности и снижения доз и, следовательно, нежелательных эффектов. В этой ситуации системы доставки лекарств (СДЛ) представляют собой новый рубеж в современной медицине [75] . СДЛ предлагают возможность создания гибрида металлоорганических каркасов (МОФ), сочетающего биосовместимость органической системы с высокими нагрузками неорганической фракции [76] . Несколько линий доказательств предполагают эффективную функционализацию наночастиц с помощью ДКА. Лазаро и коллеги [77] исследовали различные протоколы для функционализации ДКА наночастиц терефталата циркония (Zr) (UiO-66). Они продемонстрировали цитотоксичность и селективность тех же СДЛ против различных линий раковых клеток. Более того, они исключили возможную реакцию иммунной системы на ДКА-МОФ in vitro. Та же группа позже показала возможность загрузки Zr MOF вторым противораковым препаратом, таким как 5-фторурацил (5-FU), чтобы воспроизвести синергический эффект двух препаратов [78] . MOF на основе циркония, загруженный DCA, также был предназначен в качестве привлекательной альтернативы UiO-66, показывая селективную цитотоксичность in vitro по отношению к нескольким линиям раковых клеток и хорошую переносимость иммунной системой нескольких видов [79] . Недавно Štarha et al. [80] впервые синтезировали и охарактеризовали полусэндвич-комплексы, содержащие рутений или осмий и DCA (рисунок 2(a)). Оба комплекса Ru-dca и Os-DCA были проверены на линиях клеток карциномы яичников, продемонстрировав большую цитотоксичность, чем цисплатин в отдельности. Оба комплекса были способны индуцировать высвобождение цитохрома c (Cytc) из митохондрий, косвенный показатель активации апоптосомы, и, по-видимому, были менее токсичными по отношению к здоровым первичным гепатоцитам человека, что указывает на селективность в отношении рака по сравнению с нераковыми клетками. Многообещающие результаты были также получены в клетках рака молочной железы с тройным негативом [81] . Конъюгат рения (I)-DCA продемонстрировал эффективное проникновение в раковые клетки и селективное накопление в митохондриях, вызывая митохондриальную дисфункцию и метаболические нарушения [82] . В последние годы было разработано несколько многоактивных препаратов для современного нацеливания на различные внутриклеточные пути с использованием одной формулы. Безопасная, простая, воспроизводимая наноформула комплекса доксорубицинDCA (рисунок 2(b)) была успешно испытана на модели меланомы у мышей, показав увеличение способности к загрузке препарата, снижение побочных эффектов и усиление терапевтического эффекта [83] . Были синтезированы противоопухолевые пролекарства Pt (IV) двойного действия китеплатина с аксиальными лигандами DCA (рисунок 2(c)), охарактеризованы и протестированы на различных линиях опухолевых клеток и in vivo [84]. Для преодоления резистентности рака были предложены тройные производные Pt (IV) цисплатина в качестве новых мощных противораковых агентов, способных конъюгировать действие цисплатина, ингибиторов циклооксигеназы и DCA (рисунок 2(d)) [85] . Новый комплекс, содержащий DCA, платину и биотин (DPB), был успешно испытан, демонстрируя многогранные противоопухолевые свойства (рисунок 2(e)). Авторы продемонстрировали способность такого пролекарства влиять на энергетический метаболизм, способствовать апоптозу и взаимодействовать с ДНК. Высокая селективность биотина в отношении раковых клеток сводит к минимуму пагубное воздействие на нормальные клетки и улучшает лечебный эффект на опухоли [86] . Характеристики и экспериментальные доказательства основных классов соединений обобщены в таблице 3.

Класс лекарственной формы Функции Тесты in vitro Тесты in vivo Экспериментальные доказательства Ссылки
Металло-DCA каркасы (без платины) Ионы металлов, связанные с органическими лигандами в пористые каркасы MCF-7/MDA-MB-231 (молочная железа) HeLa/LO2 (шейка матки) A2780 (яичник) A549/NCl-H1229 (легкое) Модели грудных мышей Биосовместимость, избирательная цитотоксичность, совместимость с иммунной системой, низкая мутагенность. [77–82 ]
Конъюгат доксорубицина-DCA Комплексы ДХА и химиотерапевтических препаратов B16F10 (меланома) Мышиные модели саркомы и меланомы Безопасность селективной цитотоксичности. Эффективность противоопухолей in vivo. [83]
Платиновые пролекарства с DCA Платиновое ядро, связанное с DCA и другими препаратами MCF-7 (молочная железа) LoVo/HCT-15/HCT116 (толстая кишка) A549 (легкие) BxPC3/PSN-1 (поджелудочная железа) A375 (меланома) BCPAP (щитовидная железа) HeLa (шейка матки) HepG2 (гепатокарцинома) Мышиные модели карциномы легких Избирательная цитотоксичность, множественное действие. Увеличение клеточного поглощения. [84–86 ]

Таблица 3: Свойства основных классов лекарственных форм DCA, протестированные на линиях раковых клеток и моделях in vivo с соответствующими экспериментальными доказательствами.


Рисунок 2: Новые лекарственные формы, содержащие DCA. (a) Схематическое изображение комплексов Os-DCA и Ru-DCA [81]. (b) Комплекс доксорубицин (DOX)-DCA [83]. (c) Пролекарства Pt двойного действия китеплатина и DCA [84]. (d) Примеры производных Pt(IV) тройного действия цисплатина, содержащих DCA (красный), производные цисплатина (черный) и ингибиторы COX (зеленый) [85]. (e) Химическая структура DPB, содержащего DCA (красный), биотин (синий) и комплекс платины (Pt) (черный) [86].

Другие предлагаемые механизмы действия DCA

Метаболический сдвиг от гликолиза к окислению глюкозы из-за ингибирования PDK и последующей активации PDH является наиболее известным и общепринятым молекулярным эффектом введения DCA. Последующие биохимические изменения, включая увеличение ROS и изменение потенциала митохондриальной мембраны, могут быть ответственны за остановку пролиферации и гибель раковых клеток, тем самым объясняя полезный потенциал DCA в лечении рака [9] . Однако молекулярные промежуточные продукты, активируемые после введения DCA, до сих пор неизвестны. Вполне возможно, что такая малая молекула может напрямую или косвенно влиять на другие клеточные и молекулярные мишени (рисунок 3), демонстрируя другие механизмы действия, чтобы объяснить ее эффективность также в клеточных моделях, где она не производит ожидаемого метаболического сдвига [12] . Протеомный подход, примененный к клеткам рака легких, продемонстрировал способность DCA увеличивать концентрацию каждого промежуточного продукта TCA, при этом он не влиял на поглощение глюкозы или гликолитический процесс от глюкозы до пирувата [87] . В попытке пролить свет на механизм действия DCA, Дюбуа и коллеги использовали подход, основанный на метаболомике, на нескольких линиях клеток рака яичников, обработанных DCA, и обнаружили общее заметное истощение внутриклеточного пантотената, предшественника CoA, а также сопутствующее увеличение CoA, что предполагает способность DCA увеличивать биосинтез CoA de novo. Поскольку высокие концентрации CoA оказались токсичными для клеток, этот метаболический эффект может быть ответственен за токсичность раковых клеток, опосредованную DCA [88] . Совсем недавно работа Эль Сайеда и соавторов представила новую основанную на доказательствах гипотезу, предполагающую, что эффективность DCA против рака может быть обусловлена ​​его способностью противодействовать ацетату [89] , который, как известно, является энергетическим субстратом для глиобластомы и метастазов в мозг, способным усиливать синтез ДНК, РНК и белка, а также посттрансляционные модификации, тем самым способствуя пролиферации клеток и прогрессированию рака. Более того, высокие уровни ацетата связаны с устойчивостью к противораковым препаратам [90] . Было показано, что DCA способен обращать вспять метаболические изменения, вызванные ацетатом, восстанавливая физиологические уровни сывороточного лактата и свободных жирных кислот, а также концентрацию калия и фосфора. По мнению авторов, благодаря структурному сходству с ацетатом, DCA может ингибировать метаболические эффекты, вызванные ацетатом, ответственные за рост раковых клеток и химиорезистентность [89] . Другим возможным дополнительным эффектом DCA может быть модуляция pH. Известно, что модуляция уровня pH влияет на процессы пролиферации и апоптоза [91] , а также на чувствительность к химиотерапии [92].Обработка DCA может как увеличивать, так и уменьшать внутриклеточный pH. Вторичным эффектом перенаправления пирувата в митохондрии с помощью DCA будет снижение лактата и последующее увеличение внутриклеточного pH. С другой стороны, DCA способен уменьшать экспрессию монокарбоксилатных транспортеров и V-АТФазы с последующим снижением pH, и это особенно происходит в опухолевых клетках, экспрессирующих большее количество этих переносчиков по сравнению с нормальными аналогами [93] . Учитывая способность вызывать быстрое внутриклеточное закисление опухоли, Albatany et al. [94] предположили о возможном использовании DCA в качестве трекера при визуализации in vivo мышиной модели глиобластомы и поддержали терапевтическое использование DCA, поскольку известно, что внутриклеточное закисление вызывает активацию каспазы и фрагментацию ДНК раковых клеток [95] . Животные модели позволяют идентифицировать возможную дополнительную молекулярную мишень DCA. Эксперименты, проведенные на крысах, подчеркнули способность DCA ингибировать экспрессию почечного котранспортера Na-K-2Cl (NKCC) в почках крыс [96] . Поскольку NKCC является важным биомаркером регуляции внеклеточного и внутриклеточного ионного гомеостаза и участвует в прогрессировании клеточного цикла, он играет важную роль в пролиферации раковых клеток, апоптозе и инвазии. Белкахла и др. [97] исследовали взаимодействие между таргетингом метаболизма и экспрессией транспортеров ABC, ответственных за экспорт лекарств из клеток и последующую множественную лекарственную устойчивость, и обнаружили, что лечение DCA способно снизить экспрессию генов и белков транспортеров ABC в нескольких опухолевых клетках, экспрессирующих дикий тип p53, как in vitro, так и in vivo [98] . Уже была продемонстрирована способность DCA вызывать дифференциацию посредством модуляции взаимодействия PKM2/Oct4 в клетках глиомы [99] . Полученное снижение уровней транскрипции Oct4 было связано с уменьшением фенотипа стволовости и значительным повышением чувствительности к клеточному стрессу. Это наблюдение позволяет предположить потенциальную роль DCA против раковых стволовых клеток (CSC).

Рисунок 3: Другие предлагаемые механизмы действия DCA. Основной механизм действия DCA заключается в ингибировании пируватдегидрогеназной киназы (PDK), что приводит к активации пируватдегидрогеназы (PDH) и содействует окислительному фосфорилированию (1). DCA также увеличивает концентрацию промежуточных продуктов каждого цикла Кребса (2) [87]. DCA вызывает токсичность клеток посредством синтеза CoA de novo (3) [88]. DCA может противодействовать ацетату (4) [90]. DCA модулирует внутриклеточное закисление (5) [93, 94]. DCA ингибирует котранспортер Na-K-2Cl (6) [96]. DCA подавляет экспрессию генов и белков транспортеров ABC (7) [97]. DCA снижает экспрессию генов, связанных с самообновлением, и влияет на фракцию стволовых клеток рака (8) [99].

DCA и раковые стволовые клетки

Растет интерес к таргетированию раковых стволовых клеток (CSC), которые, по-видимому, являются основной причиной рецидива опухоли [100] . CSC обладают способностью к самообновлению с нормальными стволовыми клетками и могут давать начало дифференцирующимся клеткам, ответственным за возникновение опухоли, а также злокачественную прогрессию [101] . Низкая скорость пролиферации и специфический метаболический профиль способствуют тому, что CSC становятся устойчивыми к традиционной химиотерапии [102] . Возникла острая необходимость в разработке новых терапевтических средств, способных влиять на жизнеспособность раковых стволовых клеток [103] с целью полного уничтожения опухолевой массы. Обширный объем литературы фокусирует внимание на метаболическом фенотипе CSC, которые, по-видимому, отличаются от дифференцированных раковых клеток и могут представлять собой терапевтическую мишень [104–108] . В этой ситуации была выдвинута гипотеза о возможной чувствительности фракции CSC к DCA, которая была протестирована на различных моделях рака. Эмбриональные стволовые клетки карциномы представляют собой одну из наиболее подходящих моделей для изучения поддержания и дифференциации CSC, а также идентификации препаратов и молекул, способных модулировать эти процессы [109] . Исследования, проведенные на эмбриональных стволовых клетках (ESC), представляют собой предварительные важные доказательства, подтверждающие возможную эффективность DCA [110] . Интересно, что обработка ESC DCA способствует потере плюрипотентности и сдвигает их в сторону более активного окислительного метаболизма, что сопровождается значительным снижением экспрессии HIF1a и p53 [111] . Вега-Наредо и др. [112] описали важность митохондриального метаболизма в управлении стволовостью и дифференциацией в такой модели. Они охарактеризовали метаболический профиль фракции стволовых клеток и предположили меньшую восприимчивость фенотипа ствола к митохондриально-направленной терапии. Принуждение CSC к окислительному метаболизму путем обработки DCA позволило перейти от стволовости к дифференциации. Несколько отчетов подтверждают существование CSC в глиоме [113, 114] , и эффективность DCA для поражения CSC была широко оценена при таком типе рака, который так трудно лечить обычными методами и который характеризуется низкими показателями выживаемости. Еще в 2010 году Микелакис и коллеги предположили, как in vitro, так и in vivo, способность DCA вызывать апоптоз фракции стволовых клеток рака [26] . Модель глиомы на крысах, повторяющая несколько особенностей человеческой глиобластомы, подтвердила эффективность DCA для потенцирования апоптоза CSC глиомы, характеризующегося значительной сверхстимуляцией гликолитического пути по сравнению с нормальными стволовыми клетками [115]. Кроме того, Цзян и др. исследовали влияние DCA на небольшую популяцию стволовых клеток глиомы (GSC), выделенных из глиобластомы, продемонстрировав снижение свойств самообновления и увеличение процента гибели клеток [44] . Более того, тест in vivo на мышах с ксенотрансплантатами, полученными из GSC, обработанных DCA, показал значительное увеличение общей выживаемости. Лечение DCA также было протестировано на фракции стволовых клеток меланомы, и полученная биоэнергетическая модуляция смогла противодействовать протуморогенному действию ингибитора c-Met [116] . Совсем недавно проведенная работа на гепатоцеллюлярной карциноме человека выявила сверхэкспрессию PDK4 в сферах, происходящих из раковых клеток, с определенным фенотипом, подобным стволовому. Интересно, что лечение DCA смогло снизить жизнеспособность как раковых дифференцированных клеток, так и раковых стволовых клеток и обратить вспять химиорезистентность к традиционной терапии [36] . Наша группа недавно испытала способность DCA снижать экспрессию маркеров стволовых клеток рака CD24/CD44/EPCAM в клеточной линии рака поджелудочной железы, а также нарушать образование и жизнеспособность сфероидов [12] , что дополнительно подтверждает данные, полученные в других моделях рака. Наряду с химиорезистентностью, радиорезистентность также представляет собой ограничение эффективного лечения рака, и CSC, по-видимому, ответственны за такую ​​рефрактерность [117] . Сан и др. продемонстрировали способность DCA повышать радиочувствительность клеток медуллобластомы, влияя на стволоподобные клоны, снижая процент экспрессии CD133-позитивных клеток и уменьшая образование сфер [72] . Более того, в той же клеточной модели они показали измененный механизм репарации ДНК, вызванный DCA, способный объяснить повышенную эффективность радиотерапии.

Выводы

Нацеливание на метаболизм раковых клеток представляет собой новый фармакологический подход к лечению рака. Способность DCA переключать метаболизм с гликолиза на окислительное фосфорилирование увеличила интерес к этому препарату, уже известному своими противораковыми свойствами. Накопленные за последние годы доказательства подтверждают способность DCA преодолевать химио- и радиорезистентность при нескольких типах рака и позволяют выдвинуть гипотезу о дополнительных клеточных мишенях, способных объяснить его способность убивать раковые клетки. Необходимо разработать дальнейшие клинические исследования, которые в настоящее время ограничены пациентами с плохим прогнозом и запущенными рецидивирующими новообразованиями, уже не поддающимися другим традиционным методам лечения. Его потенциальная эффективность против раковых стволовых клеток, а также разработка новых лекарственных форм приближают нас к достижению эффективного клинического применения DCA.

Конфликты интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Данная работа была поддержана Текущими исследовательскими фондами Министерства здравоохранения Италии в IRCCS-CROB, Рионеро-ин-Вультуре, Потенца, Италия.