Тэг: Рак мочевого пузыря

Амигдалин блокирует рост клеток рака мочевого пузыря in vitro, уменьшая циклин А и cdk2

Амигдалин блокирует рост клеток рака мочевого пузыря in vitro, уменьшая циклин А и cdk2

Оригинал статьи:

https://neue-krebstherapie.com/wp-content/uploads/2015/03/Amygdalin_PlosOne_Wachstum_Blase.pdf


Аннотация

Амигдалин, природное соединение, использовалось многими онкологическими больными в качестве альтернативного подхода к лечению их болезни. Однако, действительно ли это вещество оказывает противоопухолевое действие, так и не было установлено. Было начато исследование in vitro для изучения влияния амигдалина (1,25-10 мг/мл) на рост панели линий клеток рака мочевого пузыря (UMUC-3, RT112 и TCCSUP). Были исследованы рост опухоли, пролиферация, клональный рост и прогрессирование клеточного цикла. Были исследованы белки, регулирующие клеточный цикл cdk1, cdk2, cdk4, циклин A, циклин B, циклин D1, p19, p27, а также сигналы, связанные с мишенью рапамицина млекопитающих (mTOR), phosphoAkt, phosphoRaptor и phosphoRictor. Амигдалин дозозависимо снижал рост и пролиферацию во всех трех линиях клеток рака мочевого пузыря, что отражалось в значительной задержке прогрессирования клеточного цикла и остановке G0/G1. Молекулярная оценка выявила снижение phosphoAkt, phosphoRictor и потерю компонентов Cdk и циклина. Поскольку наиболее выдающиеся эффекты амигдалина наблюдались на оси cdk2-циклин A, были проведены исследования по снижению siRNA, выявившие положительную корреляцию между уровнем экспрессии cdk2/циклин A и ростом опухоли. Таким образом, амигдалин может блокировать рост опухоли путем снижения модуляции cdk2 и циклина A. Для оценки практической ценности амигдалина как противоопухолевого препарата необходимо провести исследование in vivo.

Дихлорацетат (ДХА) и рак: обзор клинического применения

Дихлорацетат (ДХА) и рак: обзор клинического применения


Лаборатория доклинических и трансляционных исследований, IRCCS-CROB, Реферальный онкологический центр Базиликаты, Рионеро-ин-Вультуре (Pz), 85028, Италия
2 Кафедра клинической и экспериментальной медицины, Университет Фоджи, Фоджа 71121, Италия

Корреспонденцию следует направлять Тициане Татарани; tiziana.tataranni@crob.it


Приглашенный редактор: Канхайя Сингх

Авторские права © 2019 Тициана Татаранни и Клаудия Пикколи. Это статья открытого доступа, распространяемая по лицензии Creative Commons Attribution, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.

Получено:  24 июля 2019 г.
Изменено:  12 сентября 2019 г.
Принято:  11 октября 2019 г.
Опубликовано онлайн:  14 ноября 2019 г.


Обширный объем литературы описывает противораковые свойства дихлорацетата (DCA), но его эффективное клиническое применение в терапии рака по-прежнему ограничивается клиническими испытаниями. Возникновение побочных эффектов, таких как нейротоксичность, а также подозрение на канцерогенность DCA по-прежнему ограничивают клиническое применение DCA. Однако в последние годы число отчетов, поддерживающих использование DCA против рака, возросло также из-за большого интереса к нацеливанию на метаболизм опухолевых клеток. Анализ механизма действия DCA помог понять основы его селективной эффективности против раковых клеток. Успешное совместное введение DCA с традиционной химиотерапией, радиотерапией, другими препаратами или природными соединениями было протестировано на нескольких моделях рака. Новые системы доставки лекарств и многофункциональные соединения, содержащие DCA и другие препараты, по-видимому, улучшают биодоступность и кажутся более эффективными благодаря синергетическому действию нескольких агентов. Распространение отчетов, поддерживающих эффективность DCA в терапии рака, побудило провести дополнительные исследования, которые позволили найти другие потенциальные молекулярные мишени DCA. Интересно, что DCA может существенно влиять на фракцию стволовых клеток рака и способствовать искоренению рака. В совокупности эти результаты дают весомое обоснование для новых клинических трансляционных исследований DCA в терапии рака.

ВВЕДЕНИЕ

Рак является одной из основных причин смерти во всем мире. Несмотря на значительный прогресс в диагностических и терапевтических подходах, его искоренение по-прежнему представляет собой проблему. Слишком много факторов ответственны за неудачу терапии или рецидив, поэтому существует острая необходимость в поиске новых подходов к его лечению. Помимо типичных известных свойств, характерных для злокачественных клеток, включая аномальную пролиферацию, дерегуляцию апоптоза и клеточного цикла [1, 2] , раковые клетки также демонстрируют особую метаболическую машину, которая предлагает еще один многообещающий подход к терапии рака [3–5] . Наша группа уже предположила важность метаболической характеристики раковых клеток для прогнозирования эффективности метаболического лечения [6] . Лекарства, способные влиять на метаболизм рака, уже рассматриваются, показывая обнадеживающие результаты с точки зрения эффективности и переносимости [7] . В последнее десятилетие малая молекула DCA, уже используемая для лечения острого и хронического лактоацидоза, врожденных ошибок митохондриального метаболизма и диабета [8] , в основном предназначалась в качестве противоракового препарата. DCA представляет собой водорастворимую молекулу кислоты массой 150 Да, аналог уксусной кислоты, в которой два из трех атомов водорода метильной группы заменены атомами хлора (рисунок 1(a)) [9] . Введение DCA в дозах от 50 до 200 мг/кг/умер связано с уменьшением объема опухолевой массы, скорости пролиферации и распространения метастазов в нескольких доклинических моделях [10] . Наша группа уже наблюдала обратную корреляцию между способностью DCA убивать раковые клетки и их митохондриальной дыхательной способностью в карциномах ротовых клеток [11] . Более того, недавно мы описали способность DCA влиять на митохондриальную функцию и замедлять прогрессирование рака в модели рака поджелудочной железы [12] . На сегодняшний день доступны последовательные данные клинических испытаний и отчеты о случаях, описывающие введение DCA у онкологических больных [13–16] , но, несмотря на растущий объем литературы, подтверждающей эффективность DCA против рака, он пока не используется в клинической практике. Целью этого обзора является обобщение последних отчетов, предполагающих использование DCA в терапии рака в сочетании с химиотерапевтическими агентами, радиотерапией и другими химическими или природными соединениями, демонстрирующими противораковые свойства. Кроме того, мы описали данные о новых целевых фармакологических формулах DCA, способных избегать побочных эффектов и улучшать биодоступность и эффективность препарата, что еще больше поощряет его возможное клиническое применение. Наконец, мы рассмотрели последние результаты, предполагающие другие потенциальные механизмы действия DCA, включая новые данные о его способности влиять на фракцию стволовых клеток рака.

Рисунок 1: (a) Химическая структура DCA. (b) Механизм действия DCA: PDK: пируватдегидрогеназная киназа; PDH: пируватдегидрогеназа. Черные пунктирные линии — биохимические процессы, ингибируемые DCA; Красные стрелки — метаболические пути, активируемые DCA.

DCA и рак: механизм действия

Потенциальная эффективность DCA в терапии рака обусловлена ​​метаболическими свойствами раковых клеток, которые обычно характеризуются повышенной гликолитической активностью и сниженным митохондриальным окислением независимо от доступности кислорода, хорошо известный эффект Варбурга [17] . Чрезмерный гликолиз и возникающее в результате перепроизводство лактата вызывают состояние метаболического ацидоза в микроокружении опухоли [ 18] . Лактат, образующийся в результате гликолиза, поглощается окружающими клетками для поддержки роста опухоли и ингибирует механизмы апоптотической гибели клеток [19, 20] . Несколько ферментов, участвующих в гликолизе, регулируют апоптоз, и их сверхэкспрессия в раковых клетках способствует подавлению апоптоза [21] . В этой ситуации соли DCA избирательно воздействуют на раковые клетки, переключая их метаболизм с гликолиза на окислительное фосфорилирование путем ингибирования киназы пируватдегидрогеназы (PDK), ингибитора пируватдегидрогеназы (PDH) [10] . Активация PDH способствует митохондриальному окислению пирувата и нарушает метаболическое преимущество раковых клеток. Мутации митохондриальной ДНК, часто возникающие при опухолеобразовании и приводящие к дисфункции дыхательной цепи [22, 23] , делают злокачественные клетки неспособными поддерживать клеточную потребность в энергии. Кроме того, снижая выработку лактата, DCA противодействует ацидозному состоянию микроокружения опухоли, способствуя ингибированию роста опухоли и ее распространению [24] . Доставка пирувата в митохондрии вызывает ремоделирование органелл, что приводит к увеличению оттока цитохрома c и других факторов, индуцирующих апоптоз, и повышению уровня ROS с последующим снижением жизнеспособности раковых клеток [9] (рисунок 1(b)).

Побочные эффекты и ограничения при использовании DCA

Клиническое применение DCA доступно как в пероральных, так и в парентеральных формулах, а дозы варьируются от 10 до 50 мг/кг/смерть [25] . Никакие доказательства тяжелой гематологической, печеночной, почечной или сердечной токсичности не подтверждают безопасность DCA [26] . Распространенные желудочно-кишечные побочные эффекты часто возникают у определенного процента пациентов, получавших лечение DCA [15] . Наиболее известным ограничением для введения DCA, наблюдавшимся как в доклинических, так и в клинических исследованиях, является периферическая невропатия [27] . Избирательность повреждения нервной системы, вызванного DCA, может быть связана с отсутствием хорошо оснащенного аппарата, способного справиться с более устойчивым окислительным фосфорилированием в клетках, продуцирующих АТФ в основном посредством гликолиза [28] . Возникающая в результате перегрузка митохондрий ставит под угрозу эффективность антиоксидантных систем, неспособных противостоять чрезмерному количеству ROS. В этой ситуации современное введение антиоксидантов должно представлять собой дополнительную стратегию для минимизации невропатии, вызванной DCA [27] . Экспрессия и активность глутатионтрансферазы zeta1 (GSTZ1), первого фермента, ответственного за клиренс DCA, могут влиять на сущность повреждения. Несинонимичные функциональные однонуклеотидные полиморфизмы (SNP) в гене человека GSTZ1 приводят к появлению различных гаплотипов, которые отвечают за различную кинетику и динамику DCA. Была продемонстрирована четкая связь между гаплотипом GSTZ1 и клиренсом DCA. На этой основе персонализированная дозировка DCA, основанная не только на массе тела, может минимизировать или предотвратить побочные эффекты у пациентов, хронически принимающих этот препарат [29] . Возникновение нейропатии связано с хроническим пероральным приемом DCA и является обратимым эффектом, ограниченным временем лечения [30] . Внутривенный путь снижает, OH Cl Cl O (a) Раковые клетки Раковые клетки Смерть раковых клеток Лактат Опухоль Микросреда Лактат Пируват Гликолиз PDK DCA PDH Окислительное фосфорилирование Апоптоз восстановление Цитохром c Глюкоза (b) Рисунок 1: (a) Химическая структура DCA. (b) Механизм действия DCA: PDK: пируватдегидрогеназная киназа; PDH: пируватдегидрогеназа. Черные пунктирные линии, биохимические процессы, ингибируемые DCA; Красные стрелки, метаболические пути, активируемые DCA. 2 Окислительная медицина и клеточная продолжительность жизни, следовательно, потенциал нейротоксичности и позволяют достижению более высоких концентраций препарата обойти пищеварительную систему [13] .
Поскольку DCA входит в число побочных продуктов дезинфекции воды, обнаруженных в низких концентрациях в питьевой воде, его потенциальная канцерогенность находится на стадии оценки. Исследования, проведенные на мышах, связывают воздействие DCA в раннем возрасте с увеличением частоты возникновения гепатоцеллюлярных опухолей [31]. Вполне возможно, что постоянные изменения в метаболизме клеток, вызванные DCA, могут вызывать эпигенетические эффекты. Длительная индукция PDH и других окислительных путей, связанных с метаболизмом глюкозы, может способствовать увеличению активных форм кислорода и митохондриального стресса [27] . Однако в клинических исследованиях не сообщается о каких-либо доказательствах канцерогенного эффекта при введении DCA в терапии рака.

Синергетический эффект DCA и химиотерапевтических агентов

Комбинирование различных препаратов является общепринятой стратегией для получения синергического полезного эффекта в терапии рака, снижения дозировки препаратов, минимизации рисков токсичности и преодоления лекарственной устойчивости. Совместное введение DCA и традиционных химиотерапевтических агентов было предназначено и протестировано на нескольких моделях рака (таблица 1). Лечение DCA, по-видимому, повышает эффективность химиотерапии, вызывая биохимические и метаболические изменения, что приводит к значительным изменениям энергетического баланса раковых клеток. Исследование, проведенное при немелкоклеточном раке легких (НМРЛ), показало как in vitro, так и in vivo, что совместное введение DCA с паклитакселом повышает эффективность гибели клеток за счет ингибирования аутофагии [32] . Эффективная комбинация DCA и доксорубицина (DOX) была протестирована на клетках HepG2, продемонстрировав способность DCA нарушать клеточную антиоксидантную защиту, тем самым способствуя окислительному повреждению, в свою очередь, вызванному лечением DOX [33] . Существует сильная связь между сверхэкспрессией PDK и химиорезистентностью; таким образом, можно предположить, что ингибирование PDK может помочь повторно сенсибилизировать раковые клетки к препаратам. Сверхэкспрессия изоформы PDK2 была связана с резистентностью к паклитакселу при НМРЛ. Интересно, что комбинация DCA с паклитакселом была более эффективна в уничтожении резистентных клеток, чем лечение паклитакселом или DCA по отдельности [34] . Подобно НМРЛ, интересное исследование in vivo, проведенное при распространенном раке мочевого пузыря, показало повышенную экспрессию изоформы PDK4 при высокой степени злокачественности по сравнению с раком низкой степени злокачественности, а совместное лечение DCA и цисплатином значительно уменьшило объемы опухоли по сравнению с DCA или цисплатином по отдельности [35]. Недавнее исследование подтвердило способность DCA устранять химиорезистентность, связанную с PDK4, также при гепатоцеллюлярной карциноме человека (ГЦК) [36] .

Опухолевая сущность Модельная система Препарат химиотерапии, вводимый совместно с DCA Механизм действия Исход Ссылки
Рак легких Линии клеток A549-H1975/модель ксенотрансплантата Паклитаксел Торможение аутофагии Эффективная сенсибилизация к химиотерапии рака [32]
Гепатокарцинома Линия клеток HepG2 Доксорубицин Нарушение антиоксидантной защиты Увеличение повреждения клеток из-за индукции окислительного стресса [33]
Рак легких Линия клеток A549 Паклитаксел Повышенная химиочувствительность за счет ингибирования PDK2 Преодоление резистентности к паклитакселу [34]
Рак мочевого пузыря Клеточные линии HTB-9, HT-1376, HTB-5, HTB-4/модель ксенотрансплантата Цисплатин Повышенная химиочувствительность за счет ингибирования PDK4 Увеличение гибели раковых клеток и потенциальные терапевтические преимущества [35]
Гепатокарцинома Сферические культуры из клеточных линий HepaRG и BC2 Цисплатин, сорафениб Повышенная химиочувствительность за счет ингибирования PDK4 Улучшение терапевтического эффекта химиотерапии за счет восстановления активности митохондрий [36]

Таблица 1: Список отчетов, предполагающих положительный эффект совместного применения DCA и химиотерапии при нескольких типах рака.


Синергетический эффект DCA и других потенциальных противораковых препаратов

Последовательный объем литературы предполагает положительные эффекты совместного введения DCA с соединениями, которые в настоящее время используются для лечения других заболеваний, но демонстрируют противораковые свойства в нескольких моделях рака (таблица 2). Современное введение DCA и антибиотика салиномицина, недавно заново открытого за его цитотоксические свойства как потенциального противоракового препарата, было протестировано на линиях клеток колоректального рака. Их лечение, по-видимому, оказывает синергический цитотоксический эффект, ингибируя экспрессию белков, связанных с множественной лекарственной устойчивостью [37] . Раковые клетки, лишенные метаболических ферментов, участвующих в метаболизме аргинина, могут привести к чувствительности к лечению аргиназой. Интересно, что совместное введение рекомбинантной аргиназы и DCA оказывает антипролиферативный эффект при тройном негативном раке молочной железы из-за активации p53 и индукции остановки клеточного цикла [38] . Ингибиторы COX2, в основном используемые в качестве противовоспалительных препаратов, недавно были предложены в качестве противоопухолевых препаратов из-за их антипролиферативной активности. Интригующее исследование, проведенное на клетках рака шейки матки, показало неспособность DCA убивать клетки рака шейки матки, сверхэкспрессирующие COX2, и продемонстрировало, что ингибирование COX2 целекоксибом делает клетки рака шейки матки более чувствительными к DCA как в экспериментах in vitro, так и in vivo [39] . Поскольку DCA способствует окислительному фосфорилированию за счет снижения гликолитической активности, сочетание DCA с другими препаратами, усиливающими состояние зависимости от глюкозы, может быть многообещающей стратегией. Такой подход был опробован при раке головы и шеи, при котором введение пропранолола, неселективного бета-блокатора, способного влиять на митохондриальный метаболизм опухолевых клеток, вызывало гликолитическую зависимость и энергетический стресс, делая клетки более уязвимыми для лечения DCA [40] . Аналогичные результаты были получены в клетках меланомы, в которых введение ингибиторов рецептора ретиноевой кислоты β (RARβ) вызывало сенсибилизацию к DCA [41] . Положительный эффект совместного введения DCA с метформином, гипогликемическим препаратом, широко используемым для лечения диабета, был продемонстрирован в доклинической модели глиомы [42] , а также в низкометастатическом варианте карциномы легких Льюис (LLC) [43] . Цзян и его коллеги исследовали эффекты фенформина, аналога метформина, и DCA в глиобластоме, продемонстрировав, что одновременное ингибирование комплекса I и PDK фенформином и DCA, соответственно, снижало самообновление и жизнеспособность стволовых клеток глиомы (GSC), что предполагает их возможное использование для воздействия на фракцию стволовых клеток рака [44] .

Лекарство Основная функция Опухолевая сущность Модельная система Исход Ссылки
Салиномицин Антибиотик Колоректальный рак Линии клеток DLD-1 и HCT116 Ингибирование белков, связанных с множественной лекарственной устойчивостью [37]
Аргиназа Метаболизм аргинина Рак молочной железы Модель MDA-MB231 и MCF-7/ксенотрансплантат Антипролиферативный эффект за счет активации p53 и остановки клеточного цикла [38]
ингибиторы ЦОГ2 Воспаление Рак шейки матки Линии клеток HeLa и SiHa/модель ксенотрансплантата Подавление роста раковых клеток [39]
Пропранолол Бета-блокатор Рак головы и шеи Клеточные линии mEERL и MLM3/C57Bl/6 м Повышение глюкозозависимости и усиление эффекта химиолучевой терапии [40]
Ингибиторы RARβ Метаболизм витамина А Меланома Клеточные линии ED-007, ED-027, ED-117 и ED196 Развитие зависимости от глюкозы и сенсибилизация к DCA [41]
Метформин Диабет Глиома, карцинома легких Льюиса Модель ксенотрансплантата; клетки LLC/R9 Продление жизни мышей с глиомой; сильная зависимость от глюкозы в микроокружении опухоли [42, 43]
Фенформин Диабет Глиобластома Модель стволовых клеток глиомы/ксенотрансплантата Торможение самообновления раковых стволовых клеток [44]

Таблица 2: Список препаратов, основная функция которых была протестирована в сочетании с DCA на нескольких моделях рака.


Совместное использование DCA и натуральных соединений

Клиническое применение природных соединений представляет собой многообещающий новый подход к лечению ряда заболеваний [45] . Все больше литературы подтверждает обнаружение среди природных соединений биологически активных веществ, выделенных растениями, грибами, бактериями или морскими организмами, которые оказывают благотворное воздействие на здоровье человека [46–48] . Предположение о природных соединениях или их производных, по-видимому, представляет собой обнадеживающий подход к предотвращению возникновения или рецидива рака, и это обычно называется химиопрофилактикой [49] . Более того, природные вещества оказывают благотворное воздействие при терапии рака при совместном введении с другими препаратами, демонстрируя их способность преодолевать лекарственную устойчивость, увеличивать противораковый потенциал и снижать дозы лекарств и токсичность [50, 51] . Интересно, что недавно было предложено совместное введение DCA и природных соединений. В исследовании изучалось комбинированное действие DCA с куркумином, смешанным с эфирным маслом, соединением с полезными свойствами как для профилактики, так и для лечения рака [52] , демонстрирующим противораковый потенциал против HCC [53] . В частности, сочетание обоих соединений синергически снижало выживаемость клеток, способствуя апоптозу клеток и вызывая внутриклеточную генерацию ROS. Бетулин, природное соединение, выделенное из бересты, уже известно своим антипролиферативным и цитотоксическим действием против нескольких линий раковых клеток [54–56] . Исследование противоопухолевой активности производных бетулина in vitro при НМРЛ подтвердило его способность ингибировать in vivo и in vitro рост клеток рака легких, блокируя фазу G2/M клеточного цикла и вызывая активацию каспазы и фрагментацию ДНК. Интересно, что производное бетулина Bi-L-RhamBet было способно нарушать митохондриальную электрон-транспортную цепь (ETC), вызывая выработку ROS. Учитывая свойство DCA увеличивать общее окисление глюкозы в митохондриях через цикл Кребса и ETC, авторы объединили Bi-L-RhamBet с DCA, продемонстрировав его значительную потенцированную цитотоксичность [57] .

DCA и радиосенсибилизация

Радиотерапия представляет собой еще одну стратегию лечения рака и обеспечивает локальный подход путем введения высокоэнергетических лучей [58] . Основным эффектом облучения является индукция ROS с последующим повреждением ДНК, хромосомной нестабильностью и гибелью клеток путем апоптоза [59] . Однако некоторые опухоли демонстрируют или развивают радиорезистентность, которая является причиной неудачи радиотерапии и высокого риска рецидива опухоли или метастазирования [60] . Несколько факторов могут быть ответственны за радиорезистентность [61] . Среди них гипоксия, распространенное состояние микросреды опухоли, характеризующееся низким уровнем кислорода и сниженной генерацией видов ROS, может блокировать эффективность ионизирующего излучения [62] . Поэтому увеличение оксигенации опухоли таким образом, чтобы способствовать значительному количеству ROS [63] или напрямую индуцировать выработку ROS, может представлять собой стратегию повышения радиосенсибилизации [64 , 65] . В этой ситуации введение DCA, которое, как известно, индуцирует выработку ROS [11, 66] , может представлять собой стратегию преодоления радиорезистентности опухоли. Более того, известно, что метаболические изменения, характерные для развития рака, влияют на радиочувствительность [67, 68] . Следовательно, нацеливание на промежуточные продукты метаболизма рака может представлять собой стратегию улучшения селективного ответа рака на облучение [69] . Эффективность DCA для повышения радиочувствительности уже была продемонстрирована как на клетках глиобластомы [70] , так и на плоскоклеточной карциноме пищевода [71] . Совсем недавно было продемонстрировано, что DCA повышает радиочувствительность в клеточной модели медуллобластомы, смертельной опухоли мозга у детей, вызывая изменения метаболизма ROS и функции митохондрий и подавляя способность к восстановлению ДНК [72] . Поскольку роль иммунотерапии в восстановлении иммунной защиты против прогрессирования опухоли и метастазирования привлекает большое внимание в последние годы [73] , Гупта и Двараканат представили современное состояние возможных эффектов гликолитических ингибиторов, включая DCA, на радиосенсибилизацию опухоли, сосредоточив свое внимание на взаимодействии между метаболическими модификаторами и иммунной модуляцией в процессах радиосенсибилизации [74] . Интересно, что они сообщили о способности DCA способствовать иммунной стимуляции посредством ингибирования накопления лактата, что еще больше поддерживает его использование в качестве адъюванта радиотерапии.

DCA и новые лекарственные формы

Растет интерес к разработке новых лекарственных форм для улучшения доставки лекарств, повышения эффективности и снижения доз и, следовательно, нежелательных эффектов. В этой ситуации системы доставки лекарств (СДЛ) представляют собой новый рубеж в современной медицине [75] . СДЛ предлагают возможность создания гибрида металлоорганических каркасов (МОФ), сочетающего биосовместимость органической системы с высокими нагрузками неорганической фракции [76] . Несколько линий доказательств предполагают эффективную функционализацию наночастиц с помощью ДКА. Лазаро и коллеги [77] исследовали различные протоколы для функционализации ДКА наночастиц терефталата циркония (Zr) (UiO-66). Они продемонстрировали цитотоксичность и селективность тех же СДЛ против различных линий раковых клеток. Более того, они исключили возможную реакцию иммунной системы на ДКА-МОФ in vitro. Та же группа позже показала возможность загрузки Zr MOF вторым противораковым препаратом, таким как 5-фторурацил (5-FU), чтобы воспроизвести синергический эффект двух препаратов [78] . MOF на основе циркония, загруженный DCA, также был предназначен в качестве привлекательной альтернативы UiO-66, показывая селективную цитотоксичность in vitro по отношению к нескольким линиям раковых клеток и хорошую переносимость иммунной системой нескольких видов [79] . Недавно Štarha et al. [80] впервые синтезировали и охарактеризовали полусэндвич-комплексы, содержащие рутений или осмий и DCA (рисунок 2(a)). Оба комплекса Ru-dca и Os-DCA были проверены на линиях клеток карциномы яичников, продемонстрировав большую цитотоксичность, чем цисплатин в отдельности. Оба комплекса были способны индуцировать высвобождение цитохрома c (Cytc) из митохондрий, косвенный показатель активации апоптосомы, и, по-видимому, были менее токсичными по отношению к здоровым первичным гепатоцитам человека, что указывает на селективность в отношении рака по сравнению с нераковыми клетками. Многообещающие результаты были также получены в клетках рака молочной железы с тройным негативом [81] . Конъюгат рения (I)-DCA продемонстрировал эффективное проникновение в раковые клетки и селективное накопление в митохондриях, вызывая митохондриальную дисфункцию и метаболические нарушения [82] . В последние годы было разработано несколько многоактивных препаратов для современного нацеливания на различные внутриклеточные пути с использованием одной формулы. Безопасная, простая, воспроизводимая наноформула комплекса доксорубицинDCA (рисунок 2(b)) была успешно испытана на модели меланомы у мышей, показав увеличение способности к загрузке препарата, снижение побочных эффектов и усиление терапевтического эффекта [83] . Были синтезированы противоопухолевые пролекарства Pt (IV) двойного действия китеплатина с аксиальными лигандами DCA (рисунок 2(c)), охарактеризованы и протестированы на различных линиях опухолевых клеток и in vivo [84]. Для преодоления резистентности рака были предложены тройные производные Pt (IV) цисплатина в качестве новых мощных противораковых агентов, способных конъюгировать действие цисплатина, ингибиторов циклооксигеназы и DCA (рисунок 2(d)) [85] . Новый комплекс, содержащий DCA, платину и биотин (DPB), был успешно испытан, демонстрируя многогранные противоопухолевые свойства (рисунок 2(e)). Авторы продемонстрировали способность такого пролекарства влиять на энергетический метаболизм, способствовать апоптозу и взаимодействовать с ДНК. Высокая селективность биотина в отношении раковых клеток сводит к минимуму пагубное воздействие на нормальные клетки и улучшает лечебный эффект на опухоли [86] . Характеристики и экспериментальные доказательства основных классов соединений обобщены в таблице 3.

Класс лекарственной формы Функции Тесты in vitro Тесты in vivo Экспериментальные доказательства Ссылки
Металло-DCA каркасы (без платины) Ионы металлов, связанные с органическими лигандами в пористые каркасы MCF-7/MDA-MB-231 (молочная железа) HeLa/LO2 (шейка матки) A2780 (яичник) A549/NCl-H1229 (легкое) Модели грудных мышей Биосовместимость, избирательная цитотоксичность, совместимость с иммунной системой, низкая мутагенность. [77–82 ]
Конъюгат доксорубицина-DCA Комплексы ДХА и химиотерапевтических препаратов B16F10 (меланома) Мышиные модели саркомы и меланомы Безопасность селективной цитотоксичности. Эффективность противоопухолей in vivo. [83]
Платиновые пролекарства с DCA Платиновое ядро, связанное с DCA и другими препаратами MCF-7 (молочная железа) LoVo/HCT-15/HCT116 (толстая кишка) A549 (легкие) BxPC3/PSN-1 (поджелудочная железа) A375 (меланома) BCPAP (щитовидная железа) HeLa (шейка матки) HepG2 (гепатокарцинома) Мышиные модели карциномы легких Избирательная цитотоксичность, множественное действие. Увеличение клеточного поглощения. [84–86 ]

Таблица 3: Свойства основных классов лекарственных форм DCA, протестированные на линиях раковых клеток и моделях in vivo с соответствующими экспериментальными доказательствами.


Рисунок 2: Новые лекарственные формы, содержащие DCA. (a) Схематическое изображение комплексов Os-DCA и Ru-DCA [81]. (b) Комплекс доксорубицин (DOX)-DCA [83]. (c) Пролекарства Pt двойного действия китеплатина и DCA [84]. (d) Примеры производных Pt(IV) тройного действия цисплатина, содержащих DCA (красный), производные цисплатина (черный) и ингибиторы COX (зеленый) [85]. (e) Химическая структура DPB, содержащего DCA (красный), биотин (синий) и комплекс платины (Pt) (черный) [86].

Другие предлагаемые механизмы действия DCA

Метаболический сдвиг от гликолиза к окислению глюкозы из-за ингибирования PDK и последующей активации PDH является наиболее известным и общепринятым молекулярным эффектом введения DCA. Последующие биохимические изменения, включая увеличение ROS и изменение потенциала митохондриальной мембраны, могут быть ответственны за остановку пролиферации и гибель раковых клеток, тем самым объясняя полезный потенциал DCA в лечении рака [9] . Однако молекулярные промежуточные продукты, активируемые после введения DCA, до сих пор неизвестны. Вполне возможно, что такая малая молекула может напрямую или косвенно влиять на другие клеточные и молекулярные мишени (рисунок 3), демонстрируя другие механизмы действия, чтобы объяснить ее эффективность также в клеточных моделях, где она не производит ожидаемого метаболического сдвига [12] . Протеомный подход, примененный к клеткам рака легких, продемонстрировал способность DCA увеличивать концентрацию каждого промежуточного продукта TCA, при этом он не влиял на поглощение глюкозы или гликолитический процесс от глюкозы до пирувата [87] . В попытке пролить свет на механизм действия DCA, Дюбуа и коллеги использовали подход, основанный на метаболомике, на нескольких линиях клеток рака яичников, обработанных DCA, и обнаружили общее заметное истощение внутриклеточного пантотената, предшественника CoA, а также сопутствующее увеличение CoA, что предполагает способность DCA увеличивать биосинтез CoA de novo. Поскольку высокие концентрации CoA оказались токсичными для клеток, этот метаболический эффект может быть ответственен за токсичность раковых клеток, опосредованную DCA [88] . Совсем недавно работа Эль Сайеда и соавторов представила новую основанную на доказательствах гипотезу, предполагающую, что эффективность DCA против рака может быть обусловлена ​​его способностью противодействовать ацетату [89] , который, как известно, является энергетическим субстратом для глиобластомы и метастазов в мозг, способным усиливать синтез ДНК, РНК и белка, а также посттрансляционные модификации, тем самым способствуя пролиферации клеток и прогрессированию рака. Более того, высокие уровни ацетата связаны с устойчивостью к противораковым препаратам [90] . Было показано, что DCA способен обращать вспять метаболические изменения, вызванные ацетатом, восстанавливая физиологические уровни сывороточного лактата и свободных жирных кислот, а также концентрацию калия и фосфора. По мнению авторов, благодаря структурному сходству с ацетатом, DCA может ингибировать метаболические эффекты, вызванные ацетатом, ответственные за рост раковых клеток и химиорезистентность [89] . Другим возможным дополнительным эффектом DCA может быть модуляция pH. Известно, что модуляция уровня pH влияет на процессы пролиферации и апоптоза [91] , а также на чувствительность к химиотерапии [92].Обработка DCA может как увеличивать, так и уменьшать внутриклеточный pH. Вторичным эффектом перенаправления пирувата в митохондрии с помощью DCA будет снижение лактата и последующее увеличение внутриклеточного pH. С другой стороны, DCA способен уменьшать экспрессию монокарбоксилатных транспортеров и V-АТФазы с последующим снижением pH, и это особенно происходит в опухолевых клетках, экспрессирующих большее количество этих переносчиков по сравнению с нормальными аналогами [93] . Учитывая способность вызывать быстрое внутриклеточное закисление опухоли, Albatany et al. [94] предположили о возможном использовании DCA в качестве трекера при визуализации in vivo мышиной модели глиобластомы и поддержали терапевтическое использование DCA, поскольку известно, что внутриклеточное закисление вызывает активацию каспазы и фрагментацию ДНК раковых клеток [95] . Животные модели позволяют идентифицировать возможную дополнительную молекулярную мишень DCA. Эксперименты, проведенные на крысах, подчеркнули способность DCA ингибировать экспрессию почечного котранспортера Na-K-2Cl (NKCC) в почках крыс [96] . Поскольку NKCC является важным биомаркером регуляции внеклеточного и внутриклеточного ионного гомеостаза и участвует в прогрессировании клеточного цикла, он играет важную роль в пролиферации раковых клеток, апоптозе и инвазии. Белкахла и др. [97] исследовали взаимодействие между таргетингом метаболизма и экспрессией транспортеров ABC, ответственных за экспорт лекарств из клеток и последующую множественную лекарственную устойчивость, и обнаружили, что лечение DCA способно снизить экспрессию генов и белков транспортеров ABC в нескольких опухолевых клетках, экспрессирующих дикий тип p53, как in vitro, так и in vivo [98] . Уже была продемонстрирована способность DCA вызывать дифференциацию посредством модуляции взаимодействия PKM2/Oct4 в клетках глиомы [99] . Полученное снижение уровней транскрипции Oct4 было связано с уменьшением фенотипа стволовости и значительным повышением чувствительности к клеточному стрессу. Это наблюдение позволяет предположить потенциальную роль DCA против раковых стволовых клеток (CSC).

Рисунок 3: Другие предлагаемые механизмы действия DCA. Основной механизм действия DCA заключается в ингибировании пируватдегидрогеназной киназы (PDK), что приводит к активации пируватдегидрогеназы (PDH) и содействует окислительному фосфорилированию (1). DCA также увеличивает концентрацию промежуточных продуктов каждого цикла Кребса (2) [87]. DCA вызывает токсичность клеток посредством синтеза CoA de novo (3) [88]. DCA может противодействовать ацетату (4) [90]. DCA модулирует внутриклеточное закисление (5) [93, 94]. DCA ингибирует котранспортер Na-K-2Cl (6) [96]. DCA подавляет экспрессию генов и белков транспортеров ABC (7) [97]. DCA снижает экспрессию генов, связанных с самообновлением, и влияет на фракцию стволовых клеток рака (8) [99].

DCA и раковые стволовые клетки

Растет интерес к таргетированию раковых стволовых клеток (CSC), которые, по-видимому, являются основной причиной рецидива опухоли [100] . CSC обладают способностью к самообновлению с нормальными стволовыми клетками и могут давать начало дифференцирующимся клеткам, ответственным за возникновение опухоли, а также злокачественную прогрессию [101] . Низкая скорость пролиферации и специфический метаболический профиль способствуют тому, что CSC становятся устойчивыми к традиционной химиотерапии [102] . Возникла острая необходимость в разработке новых терапевтических средств, способных влиять на жизнеспособность раковых стволовых клеток [103] с целью полного уничтожения опухолевой массы. Обширный объем литературы фокусирует внимание на метаболическом фенотипе CSC, которые, по-видимому, отличаются от дифференцированных раковых клеток и могут представлять собой терапевтическую мишень [104–108] . В этой ситуации была выдвинута гипотеза о возможной чувствительности фракции CSC к DCA, которая была протестирована на различных моделях рака. Эмбриональные стволовые клетки карциномы представляют собой одну из наиболее подходящих моделей для изучения поддержания и дифференциации CSC, а также идентификации препаратов и молекул, способных модулировать эти процессы [109] . Исследования, проведенные на эмбриональных стволовых клетках (ESC), представляют собой предварительные важные доказательства, подтверждающие возможную эффективность DCA [110] . Интересно, что обработка ESC DCA способствует потере плюрипотентности и сдвигает их в сторону более активного окислительного метаболизма, что сопровождается значительным снижением экспрессии HIF1a и p53 [111] . Вега-Наредо и др. [112] описали важность митохондриального метаболизма в управлении стволовостью и дифференциацией в такой модели. Они охарактеризовали метаболический профиль фракции стволовых клеток и предположили меньшую восприимчивость фенотипа ствола к митохондриально-направленной терапии. Принуждение CSC к окислительному метаболизму путем обработки DCA позволило перейти от стволовости к дифференциации. Несколько отчетов подтверждают существование CSC в глиоме [113, 114] , и эффективность DCA для поражения CSC была широко оценена при таком типе рака, который так трудно лечить обычными методами и который характеризуется низкими показателями выживаемости. Еще в 2010 году Микелакис и коллеги предположили, как in vitro, так и in vivo, способность DCA вызывать апоптоз фракции стволовых клеток рака [26] . Модель глиомы на крысах, повторяющая несколько особенностей человеческой глиобластомы, подтвердила эффективность DCA для потенцирования апоптоза CSC глиомы, характеризующегося значительной сверхстимуляцией гликолитического пути по сравнению с нормальными стволовыми клетками [115]. Кроме того, Цзян и др. исследовали влияние DCA на небольшую популяцию стволовых клеток глиомы (GSC), выделенных из глиобластомы, продемонстрировав снижение свойств самообновления и увеличение процента гибели клеток [44] . Более того, тест in vivo на мышах с ксенотрансплантатами, полученными из GSC, обработанных DCA, показал значительное увеличение общей выживаемости. Лечение DCA также было протестировано на фракции стволовых клеток меланомы, и полученная биоэнергетическая модуляция смогла противодействовать протуморогенному действию ингибитора c-Met [116] . Совсем недавно проведенная работа на гепатоцеллюлярной карциноме человека выявила сверхэкспрессию PDK4 в сферах, происходящих из раковых клеток, с определенным фенотипом, подобным стволовому. Интересно, что лечение DCA смогло снизить жизнеспособность как раковых дифференцированных клеток, так и раковых стволовых клеток и обратить вспять химиорезистентность к традиционной терапии [36] . Наша группа недавно испытала способность DCA снижать экспрессию маркеров стволовых клеток рака CD24/CD44/EPCAM в клеточной линии рака поджелудочной железы, а также нарушать образование и жизнеспособность сфероидов [12] , что дополнительно подтверждает данные, полученные в других моделях рака. Наряду с химиорезистентностью, радиорезистентность также представляет собой ограничение эффективного лечения рака, и CSC, по-видимому, ответственны за такую ​​рефрактерность [117] . Сан и др. продемонстрировали способность DCA повышать радиочувствительность клеток медуллобластомы, влияя на стволоподобные клоны, снижая процент экспрессии CD133-позитивных клеток и уменьшая образование сфер [72] . Более того, в той же клеточной модели они показали измененный механизм репарации ДНК, вызванный DCA, способный объяснить повышенную эффективность радиотерапии.

Выводы

Нацеливание на метаболизм раковых клеток представляет собой новый фармакологический подход к лечению рака. Способность DCA переключать метаболизм с гликолиза на окислительное фосфорилирование увеличила интерес к этому препарату, уже известному своими противораковыми свойствами. Накопленные за последние годы доказательства подтверждают способность DCA преодолевать химио- и радиорезистентность при нескольких типах рака и позволяют выдвинуть гипотезу о дополнительных клеточных мишенях, способных объяснить его способность убивать раковые клетки. Необходимо разработать дальнейшие клинические исследования, которые в настоящее время ограничены пациентами с плохим прогнозом и запущенными рецидивирующими новообразованиями, уже не поддающимися другим традиционным методам лечения. Его потенциальная эффективность против раковых стволовых клеток, а также разработка новых лекарственных форм приближают нас к достижению эффективного клинического применения DCA.

Конфликты интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Данная работа была поддержана Текущими исследовательскими фондами Министерства здравоохранения Италии в IRCCS-CROB, Рионеро-ин-Вультуре, Потенца, Италия.



Эффект амигдалина при лечении плоскоклеточного рака индуцированный в буккальном мешке золотого сирийского хомяка

Журнал стоматологических и медицинских наук IOSR (IOSR-JDMS)

 

электронный ISSN: 2279-0853, p-ISSN: 2279-0861. Том 15, выпуск 2, версия. IX (февраль 2016 г.), стр. 75–79, www.iosrjournals.org.

 

Эффект амигдалина при лечении плоскоклеточного рака

индуцированный в буккальном мешке золотого сирийского хомяка

 

 

Амира Нур, доктор медицинских наук, магистр наук

1 Базель Азар, доктор медицинских наук, магистр наук

2 Анас Рабата, доктор медицинских наук, магистр наук

3 Проф.Ахмад Манадили, доктор медицинских наук, магистр, доктор философии

Кафедра патологии полости рта Дамасского университета

1Кафедра челюстно-лицевой хирургии Дамасского университета

Институт стоматологии и стоматологии Университета Палацкого

Кафедра патологии полости рта Дамасского университета

Кафедра оральной гистологии Масариковского университета

Кафедра патологии полости рта Дамасского университета



В последнее время научные исследования сосредоточились на альтернативной и комплементарной медицине как широко распространенном методе лечения многих заболеваний, включая рак. Рак, который считается опасным для жизни заболеванием, поражает пациентов во всем мире. Традиционная медицина до сих пор не обеспечивает пациентам окончательного и абсолютного решения их страданий, особенно в терминальных случаях рака. Многие люди используют альтернативные и естественные методы, чтобы максимально уменьшить боль и побочные эффекты этой ужасной болезни. Амигдалин, извлеченный из семян абрикоса и миндаля, обсуждается как настоящее лекарство от рака и многих других заболеваний. Поэтому с помощью этого исследования мы хотели оценить эффективность амигдалина в лечении плоскоклеточного рака, наиболее распространенной карциномы полости рта, индуцированной у сирийского хомяка, и определить, каким образом это вещество останавливает раковые клетки.

 

Материалы и методы:20 хомяков были разделены на две группы: группу больных (10 хомяков), которую лечили амигдалином, и контрольную группу (10 хомяков), которая не получала никакого лечения. Использованный канцерогенный материал представлял собой (DMPA), а иммуногистохимические пятна - P53 и Ki67.

 

Результаты и выводы:Существует значительная статистическая разница между двумя группами как для P53, так и для Ki67. В заключение отметим, что амигдалин оказывает терапевтический эффект при лечении плоскоклеточного рака, индуцируя апоптоз раковых клеток.

 

Ключевые слова:Плоскоклеточный рак, Амигдалин, альтернативная терапия, сирийский хомяк, клеточный цикл, P53, Ki67.


Введение:

 

Злокачественные опухоли являются основными заболеваниями, наносящими серьезный вред здоровью человека.

 

Всемирная организация здравоохранения (ВОЗ) включила его в список основных заболеваний, представляющих серьезную угрозу здоровью человека.

 

Плоскоклеточный рак полости рта (OSCC) составляет 95% всех форм рака головы и шеи и более.

 

за последнее десятилетие его заболеваемость возросла на 50%. Канцерогенез полости рта представляет собой многостадийный процесс, который одновременно включает предраковые поражения, инвазию и метастазирование. Деградация клеточного цикла и пролиферация злокачественных клеток приводит к утрате механизмов контроля, обеспечивающих нормальную функцию тканей (1).

 

Плоскоклеточная карцинома головы и шеи (SCCHN) возникает в результате множественных молекулярных событий, вызванных воздействием различных привычек, таких как табакокурение и употребление алкогольных напитков, под влиянием факторов окружающей среды, возможно, в некоторых случаях вирусов, на фоне наследственной резистентности или восприимчивости. Плоскоклеточный рак полости рта имеет аналогичную этиологию. Генетические повреждения затрагивают многие хромосомы и гены, включая онкогены и гены-супрессоры опухолей, и именно накопление таких генетических повреждений, возможно, наряду с нарушением способности восстанавливать эти повреждения (в некоторых случаях это наследственный признак), по-видимому, приводит к карциноме у в некоторых случаях, иногда через клинически очевидное предраковое или потенциально злокачественное поражение. В этом сообщении рассматриваются достижения в понимании этой сложной и быстро развивающейся области исследований за последнее десятилетие (2).

 

Плоскоклеточный рак полости рта (ПКР) считается первично локализованным заболеванием, отдаленные метастазы встречаются нечасто. В литературе сообщается о растущем количестве сообщений о случаях, связанных с необычными участками отдаленных метастазов карциномы полости рта. Вероятно, это связано с улучшением контроля над раком в первичном очаге, что увеличивает вероятность развития отсроченного метастазирования. В одной статье представлен случай 58-летней женщины, которая отказалась от хирургического лечения по поводу очень агрессивного ПКР альвеолярного гребня нижней челюсти. Опухоль не ответила на химиотерапию или лучевую терапию, и у пациента появились метастазы в черепные кости примерно через 1 год после первоначального диагноза. Расположение первичной опухоли (рядом с костью), а также отказ пациента от предложенного лечения могли привести к гематологическому распространению злокачественных клеток, что привело к отдаленному метастазированию (3).

 


  • настоящее время многие исследования показывают, что 4-6% случаев рака полости рта возникают в возрасте моложе 40 лет. При изучении факторов риска в этой возрастной группе было отмечено, что они не связаны с курением или употреблением алкоголя, которые составляют основные факторы риска в старших возрастных группах. Предполагается, что предрасположенность к генетической


нестабильности является вероятной причиной (4).

 

Плоскоклеточный рак головы и шеи (HNSCC) — заболевание людей среднего и пожилого возраста. Однако в последнее время сообщалось о повышении заболеваемости HNSCC у молодых людей в возрасте до 45 лет. В нашем поиске литературы мы сосредоточились на эпидемиологии и этиологии HNSCC у взрослых в возрасте до 45 лет.

 

HNSCC у молодых людей связан с более высоким уровнем заболеваемости среди некурящих, более низким соотношением женщин и мужчин, более высоким процентом опухолей полости рта и ротоглотки и меньшим количеством вторичных первичных опухолей. Однако, помимо традиционных факторов риска, связанных с употреблением табака и алкоголя, причины возникновения этих видов рака у молодых людей остаются неясными. Агенты, которые могут способствовать риску, включают инфекцию подтипами вируса папилломы человека высокого риска, а также генетические факторы или статус иммунодефицита. Ожидаемый рост заболеваемости и смертности среди молодых людей с HNSCC может стать серьезной проблемой общественного здравоохранения, если текущие тенденции сохранятся, особенно образ жизни, который может способствовать развитию этого заболевания (5).

 

Исследование вируса папилломы человека и его экспрессии в нормальной слизистой оболочке полости рта и некоторых заболеваниях полости рта показало, что вирус папилломы человека все чаще выявляется в нормальной слизистой оболочке полости рта, доброкачественной лейкоплакии, интраэпителиальной неоплазии, плоскоклеточной карциноме и бородавчатой карциноме. Он выявлялся при плоскоклеточном раке полости рта значительно чаще в исследованиях, в которых использовался анализ с высокой чувствительностью (полимеразная цепная реакция), чем в исследованиях, в которых использовались анализы с умеренной чувствительностью (например, Саузерн-блот-гибридизация) и анализы с низкой чувствительностью (например, иммуногистохимия, гибридизация in situ). ). ДНК вируса папилломы человека значительно чаще обнаруживалась в замороженной плоскоклеточной карциноме полости рта, чем в ткани, залитой в парафин. В исследованиях, в которых анализировалось использование химических кофакторов, употребление табака и алкоголя чаще ассоциировалось с плоскоклеточным раком полости рта, чем с наличием вируса папилломы человека. Однако разница не была существенной. Генотипы вируса папилломы человека высокого риска имеют значительную связь с плоскоклеточным раком полости рта (6).

 

Мутация, дезактивация и нарушение регуляции экспрессии онкогенов и генов-супрессоров опухолей могут быть участвует в патогенезе плоскоклеточного рака полости рта (SCC). Деактивация гена-супрессора опухолей р53 обеспечивает пролиферацию клеток и блокирует апоптоз злокачественных кератиноцитов полости рта. Мутация онкогена ras приводит к постоянной митогенной передаче сигналов. Повышенная экспрессия c-Myc в присутствии факторов роста обеспечивает дополнительный пролиферативный сигнал. Утрата функции гена-супрессора опухолей ретинобластомы (Rb) может способствовать гиперпролиферации кератиноцитов полости рта, и недавние данные свидетельствуют о том, что для опухолевого процесса необходима одновременная деактивация как р53, так и Rb. Повышенная экспрессия Bcl-2 и пониженная экспрессия Fas ингибируют апоптоз опухолевых клеток и могут вызывать устойчивость к цитотоксическим препаратам и Т-клеточную цитотоксичность соответственно. Экзогенные мутагены, такие как табак, алкоголь и вирусные онкогены, могут вызывать изменение экспрессии онкогенов и генов-супрессоров опухолей в некоторых случаях плоскоклеточного рака полости рта. Подчеркивается влияние этих механизмов на будущие методы лечения плоскоклеточного рака полости рта (7).

 


  • последние годы разработка противоопухолевых препаратов постепенно трансформировалась от цитотоксических препаратов к повышению селективности препаратов, преодолению множественной лекарственной устойчивости, разработке новых препаратов с низкой токсичностью и высокой специфичностью.


Амигдалин еще называют горьким абрикосом, лаэтрилом, миндалем. Это цианогенное соединение, принадлежащее к

 

группа ароматических цианогенных гликозидов. Его молекулярная формула: C.20ЧАС27НЕТ11, молекулярная масса 457,42.

 

Химическая структура: D-манделонитрил-β-D-глюкозид-6-β-глюкозид. Амигдалин широко распространен в растениях, особенно в семенах розоцветных растений, например, абрикоса, персика, вишни, сливы и др. (8, 9).

 

Сам по себе амигдалин нетоксичен, но при разложении некоторыми ферментами образует HCN, который является

 

ядовитое вещество (9). Многочисленные исследования подтвердили, что амигдалин оказывает противокашлевое и противоастматическое действие, а также влияет на пищеварительную систему. Кроме того, фармакологические эффекты также включают антиатерогенное действие, ингибирование интерстициального фиброза почек, предотвращение легочного фиброза, устойчивость к повреждению легких, вызванному гипероксией, иммуносупрессию, иммунную регуляцию, противоопухолевое, противовоспалительное и противоязвенное действие (10) (11) (12) (13)

 

Его использовали для лечения астмы, бронхита, эмфиземы, проказы, колоректального рака и витилиго (11). Амигдалин разлагался до синильной кислоты, которая является противоопухолевым соединением, и бензальдегида, который может вызывать обезболивающее действие, поэтому его можно использовать используется для лечения рака и облегчения боли (14).

 

Ученые указывают на использование амигдалина при лечении рака. Новое исследование изучило корреляцию между амигдалином и раком простаты. Было показано, что амигдалин индуцирует апоптотическую гибель клеток у клетки рака предстательной железы человека DU145 и LNCaP путем активации каспазы-3 посредством подавления Bcl-2, антиапоптотического белка, и повышения регуляции Bax, проапоптотического белка (14).

 

Другое исследование изучало, как амигдалин может индуцировать апоптоз в клетках линии клеток рака шейки матки человека HeLa. В клетках HeLa, обработанных амигдалином, развивались типичные апоптотические изменения. Развитие апоптоза в клетках, обработанных амигдалином, было подтверждено двойным окрашиванием обработанных амигдалином клеток аннексином V-FITC и йодидом пропидия (PI) наряду с увеличением активности каспазы-3 в этих клетках (15).

 

Эффект амигдалина изучался при заболеваниях, отличных от рака, таких как легочный фиброз. В исследовании на крысах экспериментальные группы получали внутрибрюшинное введение амигдалина (15 мг/кг/день). Крыс забивали через 7, 14 и 28 дней после введения блеомицина. Амигдалин может снижать интенсивность пиков дифференциально экспрессируемых белков в сыворотке крыс (10).

 

Амигдалин эффективен для облегчения воспалительной боли и, следовательно, может использоваться в качестве анальгетика с противовоспалительными средствами.

 

ноцицептивное и противовоспалительное действие. Проведено исследование антиноцицептивного действия амигдалина, выделенного из Prunus Armeniaca, на крысах. Внутримышечное введение амигдалина достоверно уменьшало вызванную формалином тоническую боль как на ранней (первые 10 мин после инъекции формалина), так и на поздней фазе (10–30 мин после первичной инъекции формалина). На поздней стадии амигдалин уменьшал боль, вызванную формалином, дозозависимым образом в диапазоне доз менее 1 мг/кг (16).

 

  • исследовании in vitro оценивалась противовоспалительная и обезболивающая активность амигдалина. клеточная линия, индуцированная липополисахаридом (ЛПС), и модель крысы с артритом голеностопного сустава, индуцированным каррагинаном. Амигдалин значительно ингибировал экспрессию мРНК TNF-альфа и IL-1beta в обработанных LPS клетках RAW 264.7. Амигдалин (0,005, 0,05 и 0,1 мг/кг) вводили внутримышечно сразу после индукции каррагинан-индуцированной артритной боли у крыс, а антиартритный эффект амигдалина оценивали путем измерения соотношения весового распределения несущих сил обоих стопы и окружность лодыжки, а также путем анализа уровней экспрессии трех молекулярных маркеров боли и воспаления (c-Fos, TNF-альфа и IL-1бета) в спинном мозге. Гипералгезия пораженной артритом лодыжки наиболее значительно облегчалась при инъекции 0,005 мг/кг амигдалина. При этой дозировке экспрессия c-Fos, TNF-альфа и IL-1бета в спинном мозге значительно подавлялась. Однако при дозировке более 0,005 мг/кг обезболивающего эффекта амигдалина не наблюдалось. Таким образом, лечение амигдалином эффективно облегчало реакцию на лечение ЛПС в клетках RAW 264.7 и каррагинан-индуцированный артрит у крыс и может служить анальгетиком для облегчения воспалительной боли (17).


 

Исследование in vitro изучило влияние амигдалина на рост клеток рака мочевого пузыря.

 

линии (UMUC-3, RT112 и TCCSUP). Исследовали рост опухоли, пролиферацию, клональный рост и прогрессирование клеточного цикла. Изученными белками, регулирующими клеточный цикл, были cdk1, cdk2, cdk4, циклин A, циклин B, циклин D1, p19, p27. Амигдалин в зависимости от дозы уменьшал рост и пролиферацию во всех трех клеточных линиях рака мочевого пузыря, что отражалось в значительной задержке прогрессирования клеточного цикла и остановке G0/G1. Таким образом, амигдалин может блокировать рост опухоли путем понижающей модуляции cdk2 и циклина А (18).

 

В другом исследовании сто семьдесят восемь пациентов с раком получали амигдалин плюс

 

Программа «метаболической терапии», состоящая из диеты, ферментов и витаминов. Подавляющее большинство этих пациентов до лечения находились в хорошем общем состоянии. Одна треть ранее не получала химиотерапию. Никакой существенной пользы с точки зрения излечения, улучшения или стабилизации рака, улучшения симптомов, связанных с раком, или увеличения продолжительности жизни не наблюдалось. В этом исследовании рекомендуется, чтобы пациенты, подвергшиеся воздействию этого агента, были проинструктированы об опасности отравления цианидами, а уровень цианида в их крови должен тщательно контролироваться, поскольку амигдалин является токсичным препаратом, который неэффективен при лечении рака (19).

Новое исследование показало, что амигдалин ингибирует гены, связанные с клеточным циклом в клетках рака толстой кишки человека SNU-C4. Микрочип показал, что амигдалин подавляет активность, особенно генов, принадлежащих к категории клеточного цикла. Анализ ПЦР в реальном времени (ОТ-ПЦР) показал, что уровни мРНК этих генов также снижались при лечении амигдалином в клетках рака толстой кишки человека SNU-C4. Таким образом, это позволяет предположить, что амигдалин оказывает противораковое действие посредством понижающей регуляции генов, связанных с клеточным циклом, в клетках рака толстой кишки человека и может использоваться в качестве терапевтического противоракового препарата (20).

Новое передовое исследование противоопухолевого эффекта амигдалина показало, что амигдалин является естественным

 

продукт, обладающий противоопухолевой активностью, меньшим количеством побочных эффектов, широкодоступный и относительно недорогой. Все эти особенности делают амигдалин многообещающим противоопухолевым препаратом в сочетании с препаратами условной химиотерапии, которые могут оказывать синергический эффект, что дает новые идеи для разработки новых противораковых препаратов (9).

 


  1. Материалы и методы:


 

Образец исследования:в него вошли 10 золотистых сирийских хомяков, которые были разделены на две группы: группу случаев, в которой рак был вызван в буккальном мешке, а в качестве лечения применялся амигдалин. Вторая была контрольной группой, в которой был вызван рак, но лечение не проводилось.


Амигдалин: Препарат был извлечен в лаборатории химического коллажа Дамасского университета из косточек горького абрикоса, затем полученный порошок растворяли в дистиллированной воде и готовили для инъекции в брюшину.

 

Канцерогенный агент: это ДМБА, полициклический ароматический углеводородный канцероген, который наносили на слизистую оболочку щечной сумки хомяков с помощью малярной кисти.

 

шрамирование: хомячков второй группы умерщвляли через 14 недель, предполагаемый период, в течение которого индуцируется рак в буккальном мешке. В то время как хомяки в основной группе начали получать амигдалин, инъецированный в брюшину, через 14 недель после того, как в их сумке были обнаружены язвы карциномы. Оно длилось 21 день — рекомендуемый период в различных исследованиях.

 

Образец окрашивания: Образцы были получены и окрашены традиционными красителями (гематоксилином и эозином), затем

 

были окрашены двумя иммуногистохимическими красителями: P53 и Ki67.

 

Статистика:

 

Т-тест Стьюдента использовался для двух отдельных групп, чтобы сравнить экспрессию P53 и Ki67 между группой, принимавшей витамин, и группой больных раком.





  1. Обсуждение:


 

Предполагается, что амигдалин, как дополнительное и натуральное вещество, является терапевтическим средством при многих заболеваниях. Было проведено множество исследований с целью повышения его эффективности при лечении воспалительных заболеваний, а также различных видов рака. Тем не менее, он по-прежнему является потенциально ядовитым материалом из-за выброса цианида в результате его разложения. Кроме того, в литературе недостаточно доказанных данных, чтобы заявить о самом абсолютном механизме действия этого вещества внутри раковых клеток.

 

Мы провели это исследование, индуцируя плоскоклеточную карциному, как наиболее распространенную карциному ротовой полости, в буккальном мешке золотого сирийского хомячка, используя ДМБА в качестве канцерогенного агента. Затем индуцированный рак лечили инъекцией амигдалина в брюшину.

Амигдалин состоит из двух молекул глюкозы, одной из которых является бензальдегид, который является болеутоляющим средством.

 


  • одна синильная кислота, которая считается противоопухолевым соединением.


 


  • настоящем исследовании противоопухолевые эффекты амигдалина были изучены путем обнаружения митотического


 

индекс и путь P53 после лечения индуцированной карциномы, сравнивая результаты с результатами контрольной группы.

Ki67 был почти отрицательным у хомяков, получавших амигдалин, тогда как в группе больных раком он был повышен.

 

P53 также был отрицательным в группе лечения по сравнению с его высоким значением в группе рака.

 


  • литературе нет статей, в которых упоминался бы митотический индекс при изучении влияния


 

амигдалин, ни путь P53 не изучались.

 

Клетки рака простаты, обработанные амигдалином, демонстрировали несколько морфологических характеристик.

 

апоптоз. Исследование показало, что амигдалин увеличивает экспрессию Bax, проапоптотического белка, снижает экспрессию Bcl-2, антиапоптотического белка, и увеличивает активность фермента каспазы-3 в клетках рака простаты

(14).

Тот же путь белков BAX был изучен в клетках рака шейки матки (клетки HeLa), показав

 

что в клетках HeLa, обработанных амигдалином, развивались типичные апоптотические изменения. (15)

 

Другое исследование объяснило влияние амигдалина на блокирование рака мочевого пузыря за счет уменьшения циклина А и циклин-зависимой киназы (cdk2), белков, регулирующих клеточный цикл в раковых клетках.

 


  1. Заключение:


 


  • заключение мы обнаружили, что амигдалин индуцирует апоптоз в клетках, подавляя экспрессию P53. Кроме того, амигдалин снижает уровень митотического индекса (Ki67) в этих клетках.


 

Благодарности:

 

Это исследование было поддержано грантом Дамасского университета, факультета стоматологии, кафедры патологии полости рта.

 

Рекомендации

 


  • Ривера С., Венегас Б. Гистологические и молекулярные аспекты плоскоклеточного рака полости рта (обзор). Письма об онкологии. 2014;8(1):7-11. Электронная публикация


 

25.06.2014.

 


  • Скалли С., Филд Дж. Генетические аберрации при плоскоклеточном раке головы и шеи (SCCHN) в отношении рака полости рта (обзор). Международный журнал онкологии. 1997;10(1):5-21. Электронная публикация 1 января 1997 г.


 


  • Такахама А.-младший, Корреа М.Б., де Алмейда О.П., Лопес М.А. Плоскоклеточный рак полости рта, метастазирующий в кость черепа: описание случая и обзор литературы. Общая стоматология. 2014;62(2):59-61. Электронная публикация 07.03.2014.


 


  • Ллевеллин К.Д., Джонсон Н.В., Варнакуласурия К.А. Факторы риска плоскоклеточного рака полости рта у молодых людей: комплексный обзор литературы. Оральная онкология. 2001;37(5):401-18. Электронная публикация 30 мая 2001 г.


 


  • Майхжак Е., Шибяк Б., Вегнер А., Пиенковски П., Паздровски Дж., Лучевски Л. и др. Плоскоклеточный рак полости рта и ротоглотки у молодых людей: обзор литературы. Радиология и онкология. 2014;48(1):1-10. Электронная публикация 4 марта 2014 г.


 


  • Миллер К.С., Уайт ДК. Экспрессия вируса папилломы человека в слизистой оболочке полости рта, предраковых состояниях и плоскоклеточном раке: ретроспективный обзор литературы. Хирургия полости рта, оральная медицина, патология полости рта, радиология полости рта и эндодонтия. 1996;82(1):57-68. Электронная публикация, 1 июля 1996 г.


 


  • Шугерман П.Б., Джозеф Б.К., Сэвидж Н.В. Обзорная статья: Роль онкогенов, генов-супрессоров опухолей и факторов роста при плоскоклеточном раке


 

полости рта: случай апоптоза и пролиферации. Заболевания полости рта. 1995;1(3):172-88. Электронная публикация 1 сентября 1995 г.

 


  • Хольцбехер, доктор медицинских наук, Мосс М.А., Элленбергер Х.А. Содержание цианидов в препаратах лаэтрила, семенах абрикоса, персика и яблока. Журнал токсикологии Клиническая токсикология. 1984;22(4):341-7. Электронная публикация 1 января 1984 г.


 


  • Сонг З, Сюй С. Расширенные исследования противоопухолевого действия амигдалина. Журнал исследований и терапии рака. 2014;10 Приложение 1:3-7. Электронная публикация 11 сентября 2014 г.


 


  • Ду Х.К., Сун ФК, Чжоу Х, Ли Х, Чжан Дж.П. Влияние амигдалина на белковый биомаркер сыворотки при фиброзе легких у крыс, индуцированных блеомицином. Чжунхуа лао донг вэй шэн чжи йе бин за чжи = Чжунхуа лаодун вэйшэн чжиебинг зажи = Китайский журнал промышленной гигиены и профессиональных заболеваний. 2010;28(4):260-3. Электронная публикация 15 мая 2010 г.


 


  • Чанг Х.К., Ян Х.И., Ли Т.Х., Шин М.К., Ли М.Х., Шин М.С. и др. Экстракт спермы Armycae подавляет липополисахаридиндуцированную экспрессию циклооксигеназы (коррекция циклоозигеназы)-2 и индуцибельной синтазы оксида азота в клетках микроглии мыши BV2. Биологический и фармацевтический вестник. 2005;28(3):449-54. Электронная публикация 4 марта 2005 г.


 


  • Мирмиранпур Х., Хагани С., Занди А., Халилзаде О.О., Герайеш-Неджад С., Мортеза А. и др. Амигдалин ингибирует ангиогенез в культивируемых эндотелиальных клетках диабетических крыс. Индийский журнал патологии и микробиологии. 2012;55(2):211-4. Электронная публикация 10 июля 2012 г. Чан Тай. Вероятный случай амигдалин-


 


  • индуцированной периферической нейропатии у вегетарианца с дефицитом витамина B12. Терапевтический лекарственный мониторинг. 2006;28(1):140-1. Электронная публикация 19 января 2006 г.


 


  • Чанг Х.К., Шин М.С., Ян ХИ, Ли Дж.В., Ким Ю.С., Ли М.Х. и др. Амигдалин индуцирует апоптоз посредством регуляции экспрессии Bax и Bcl-2 в клетках рака простаты человека DU145 и LNCaP. Биологический и фармацевтический вестник. 2006;29(8):1597-602. Электронная публикация 2 августа 2006 г.


 


  • Чен Ю, Ма Дж, Ван Ф, Ху Дж, Цуй А, Вэй С и др. Амигдалин индуцирует апоптоз в клетках линии клеток рака шейки матки человека HeLa. Иммунофармакология и иммунотоксикология. 2013;35(1):43-51. Электронная публикация 10.11.2012.


 


  • Хван Х.Дж., Ким П., Ким С.Дж., Ли Х.Дж., Шим И., Инь К.С. и др. Антиноцицептивный эффект амигдалина, выделенного из Prunus Armeniaca, на боль, вызванную формалином, у крыс. Биологический и фармацевтический вестник. 2008;31(8):1559-64. Электронная публикация 2 августа 2008 г.


 


  • Хван Х.Дж., Ли Х.Дж., Ким СиДжей, Шим И, Хам Д.Х. Ингибирующее действие амигдалина на экспрессию мРНК TNF-альфа и IL-1beta, индуцируемую липополисахаридами, и каррагинан-индуцированный артрит крыс. Журнал микробиологии и биотехнологии. 2008;18(10):1641-7. Электронная публикация


29.10.2008.

 


  • Макаревич Дж., Рутц Дж., Юнгель Э., Каульфус С., Райтер М., Цаур И. и др. Амигдалин блокирует рост клеток рака мочевого пузыря in vitro за счет уменьшения циклина А и cdk2. ПлоС один. 2014;9(8):e105590. Электронная публикация 20 августа 2014 г.


 


  • Мортель К.Г., Флеминг Т.Р., Рубин Дж., Кволс Л.К., Сарна Г., Кох Р. и др. Клинические испытания амигдалина (Лаэтрила) при лечении рака у человека. Медицинский журнал Новой Англии. 1982;306(4):201-6. Электронная публикация 28 января 1982 г.


 


  • Пак Х.Дж., Юн С.Х., Хан Л.С., Чжэн Л.Т., Юнг К.Х., Ум Ю.К. и др. Амигдалин ингибирует гены, связанные с клеточным циклом в клетках рака толстой кишки человека SNU-C4. Всемирный журнал гастроэнтерологии: WJG. 2005;11(33):5156-61. Электронная публикация 30 августа 2005 г.